双対ベクトル空間
(双対空間 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/08/09 13:49 UTC 版)
数学におけるベクトル空間の双対ベクトル空間(そうついベクトルくうかん、英: dual vector space)あるいは単に双対空間(そうついくうかん、英: dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度や超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。
一般に双対空間には、代数的双対と連続的双対の二種類が用いられており、代数的双対は任意のベクトル空間に対して定義することができるが、位相線型空間を扱うときは代数的双対よりもその部分線型空間として、連続線型汎函数全体の成す連続的双対空間を考えるのが自然である。
双対空間
体 F 上の任意のベクトル空間 V の(代数的)双対空間 V* は V 上の線型写像 φ: V → F(すなわち線型汎函数)全体の成す集合として定義される。集合としての V* には、次の加法とスカラー乗法
双対空間
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/12/11 09:20 UTC 版)
1 < p < ∞ の場合、Lp(μ) の双対空間(すべての連続線型汎関数からなる空間)は、1/p + 1/q = 1 を満たすような q に対する Lq(μ) への自然な同型を持つ。それは g ∈ Lq(μ) を κ p ( g ) : f ∈ L p ( μ ) ↦ ∫ f g d μ {\displaystyle \kappa _{p}(g)\colon f\in L^{p}(\mu )\mapsto \int fg\,d\mu } で定義される汎関数 κp(g) ∈ Lp(μ)∗ へと関連付ける。 ヘルダーの不等式より、κp(g) は well-defined であることと連続であることが従う。写像 κp は Lq(μ) から Lp(μ)∗ への線型写像で、ヘルダーの不等式の例外的な場合により等長写像であることが分かる。また、任意の G ∈ Lp(μ)∗ もこの方法で表現されること、すなわち κp は全射であることも、(例えばラドン=ニコディムの定理を用いて)証明することが出来る。κp は全射かつ等長なので、バナッハ空間の同型写像である。この(等長)同型性を念頭に置くと、Lq 「が」Lp の双対であると言うことは自然であろう。 1 < p < ∞ の場合、空間 Lp(μ) は回帰的である。κp を上述のような写像とし、κq を対応する Lp(μ) から Lq(μ)* の上への線型等長写像とする。Lp(μ) から Lp(μ)** への写像 j p : L p ( μ ) → κ q L q ( μ ) ∗ → ( κ p − 1 ) ∗ L p ( μ ) ∗ ∗ {\displaystyle j_{p}\colon L^{p}(\mu ){\stackrel {\kappa _{q}}{{}\to {}}}L^{q}(\mu )^{*}\;{\xrightarrow {\;(\kappa _{p}^{-1})^{*}\;}}\;L^{p}(\mu )^{**}} が、κq を κp の逆の転置(あるいは共役)と合成することにより得られるが、これは Lp(μ) の第二共役への標準埋め込み J と一致する。さらに、写像 jp は二つの全射等長写像の合成として全射であり、このことによって回帰性は示される。 S 上の測度 μ が σ-有限(英語版)であるなら、L1(μ) の双対は L∞(μ) への等長同型(より正確には、p = 1 に対応する写像 κ1 が L∞(μ) から L1(μ)∗ の上への等長写像)である。 L∞ の双対についてはより微妙である。(L∞(μ))∗ の元は、μ について絶対連続であるような、S 上の有界な符号付き有限加法的測度と一致する。詳細についてはba空間を参照されたい。選択公理を仮定すれば、この空間はいくつかの自明な場合を除いて L1(μ) よりも大きい。しかし、ℓ∞ の双対は ℓ1 であるような、ツェルメロ=フランケルの集合論の拡張も存在する。これはシェラハによる結果で、エリック・シュヒターの著書 Handbook of Analysis and its Foundations で論じられている。
※この「双対空間」の解説は、「Lp空間」の解説の一部です。
「双対空間」を含む「Lp空間」の記事については、「Lp空間」の概要を参照ください。
双対空間
- 双対空間のページへのリンク