シュヴァルツ超函数とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > ウィキペディア小見出し辞書 > シュヴァルツ超函数の意味・解説 

シュワルツ超函数

(シュヴァルツ超函数 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/09/27 16:54 UTC 版)

解析学におけるシュワルツ超函数(シュワルツちょうかんすう、: distribution; 分布)あるいは超函数: generalized function; 広義の函数)は、函数の一般化となる数学的対象である。シュワルツ超函数の概念は、古典的な意味での導函数を持たない函数に対しても微分を可能とする。特に、任意の局所可積分函数は超函数の意味で微分可能である。シュワルツ超函数は偏微分方程式の弱解(広義の解)の定式化に広く用いられる。古典的な意味での解(真の解)が存在しないか構成が非常に困難であるような場合でも、その微分方程式の超函数解はしばしばより容易に求まる。シュワルツ超函数の概念は、多くの問題が自然に解や初期条件がディラック・デルタのような超函数となるような偏微分方程式として定式化される物理学工学においても重要である。

広義の函数としての超函数 (generalized function) は1935年セルゲイ・ソボレフによって導入されたが、その後1940年代になって一貫した超函数論を展開するローラン・シュヴァルツによって再導入される。

超函数(distribution)の拡張の一つとして、佐藤超函数があるとみなすことができる。

基本的な考え方

基本的な考え方は、函数を適当な「テスト函数」(扱いやすくよい振舞いをする函数)の空間上の抽象線型汎函数と同一視することである。超函数に対する作用・演算は、それをテスト函数へ移行することによって理解することができる。

例えば、f: RR局所可積分函数、φ: RR をコンパクトな台を持つ(すなわちある有界集合の外側で恒等的に 0 となる)滑らかな函数(つまり無限回微分可能な函数)とする。函数 φ が「テスト函数」である。このとき、


シュヴァルツ超函数

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/12/25 07:00 UTC 版)

線型汎函数」の記事における「シュヴァルツ超函数」の解説

超函数論において、シュヴァルツ超函数と呼ばれる種類超函数試験函数空間上の線型汎函数として実現される

※この「シュヴァルツ超函数」の解説は、「線型汎函数」の解説の一部です。
「シュヴァルツ超函数」を含む「線型汎函数」の記事については、「線型汎函数」の概要を参照ください。

ウィキペディア小見出し辞書の「シュヴァルツ超函数」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「シュヴァルツ超函数」の関連用語

シュヴァルツ超函数のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



シュヴァルツ超函数のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのシュワルツ超函数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの線型汎函数 (改訂履歴)、ベクトル空間 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS