双対ベクトル空間とは?

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 双対ベクトル空間の意味・解説 

双対ベクトル空間

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2019/01/05 01:22 UTC 版)

数学におけるベクトル空間双対ベクトル空間(そうついベクトルくうかん、: dual vector space)あるいは単に双対空間(そうついくうかん、: dual space)は、そのベクトル空間上の線型汎函数(一次形式)全体の成す空間として定義される。有限次元ベクトル空間の双対空間はテンソルの研究に利用することができる。函数の成す(典型的には無限次元の)ベクトル空間に対する双対空間は、測度超函数、あるいはヒルベルト空間のような概念の定義や研究に用いられ、結果として双対空間は函数解析学の研究における重要な観念となっている。




注釈

  1. ^ 量子力学などの多くの分野では ·,·V × V 上の半双線型形式 を表すのに用いている。
  2. ^ a b c 本項においていくつかの事項を正当化するために、ある種の選択公理が必要であることを言っておかなければならない。例えば、任意のベクトル空間が基底を持つこと(特に RN が基底を持つこと)を示すには選択公理(に同値なツォルンの補題)が必要である。あるいはまた、無限次元ベクトル空間 V の双対が零でないとき、V からその二重双対への自然な写像が単射であることを言うためにも必要である。

出典





英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「双対ベクトル空間」の関連用語

双対ベクトル空間のお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング



双対ベクトル空間のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの双対ベクトル空間 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2019 Weblio RSS