有界とは? わかりやすく解説

う‐かい【有界】

読み方:うかい

《「うがい」とも》仏語生死流転するものとしてとらえられる世界欲界色界無色界総称有涯(うがい)。


有界

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/28 05:12 UTC 版)

上が有界集合、下が非有界集合を模式的に表したもの。ただし、下のほうは枠を超えて右方へ延々と続くものとする。

数学において集合有界(ゆうかい、: bounded)である、または有界集合(ゆうかいしゅうごう、bounded set)であるとは、ある種の「差渡しの大きさ」に関する有限性をそれが持つときにいう。有界でない集合は非有界(ひゆうかい、unbounded)であるという。

単純閉曲線はそれを境界として平面 R2 を有界(内側)および非有界(外側)な二つの領域に分ける。

定義

順序集合の有界性

順序集合 (X, ≤) とそのでない部分集合 A を考える。X L が、A の任意の元 a について aL を満たすとき、LA上界 (upper bound) といい、上界を持つ A上に有界であるまたは「上から抑えられる」(bounded [from] above) という。また X の元 l が、A の任意の元 a について la を満たすならば、lA下界 (lower bound) といい、下界を持つ A下に有界である、または「下から押さえられる」(bounded [from] below) という。

上に有界かつ下に有界な集合は単に有界であるという。

順序集合 (X, ≤) が半順序 ≤ に関して最大元および最小元を持つならば、この半順序は有界順序 (bounded order) である、または X有界順序集合 (bounded poset) であるという。有界順序を持つ順序集合 X に対し、部分集合 S に順序を制限した (S, ≤) は必ずしも有界順序にはならない。

距離空間の有界性

距離空間 (M, d) の部分集合 S有界であるとは、S が有限な半径を持つ球で覆えることをいう。すなわち、M の元 x と正数 r > 0 で、任意の S の元 s に対して d (x, s) < r となるようなものが存在するとき、S は有界であるという。

M がそれ自身を M の部分集合とみて有界であるとき、d有界距離函数 (bounded metric) といい、M有界距離空間 (bounded metric space) と呼ぶ。

ここでSが空集合でないときは中心xSの元に選ぶとしても同値である。

また同値な特徴付としてS直径 diam S := sup{d(x, y) | x, yS} が有限というものがある。

例と性質

  • 実数からなる開区間 (a, b) や閉区間 [a, b] は(通常の実数の大小関係に関する)順序集合としても(通常のユークリッド距離に関する)距離空間としても有界である。
  • 実数からなる集合(実数全体の成す集合 R の部分集合)が有界ならば、それを含む有界区間が存在する。
  • 一般に、Rn に大小関係の直積順序と通常のユークリッド距離を入れて考えるとき、Rn の部分集合 S がこの順序に関して有界となることとこの距離に関して有界となることとは等価である。
  • 実数全体 R は有界ではない(アルキメデス性)。
  • R の空でない有界集合は上限(最小上界)と下限(最大下界)を持つ。
  • ユークリッド空間 Rn の有界集合は全有界である。とくにRn の有界集合はそれが閉集合ならばコンパクトである。一般に完備距離空間の全有界部分集合はコンパクトになる。

関連項目


「有界」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



有界と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「有界」の関連用語

有界のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



有界のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの有界 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS