有向集合とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 高等数学 > 集合 > 有向集合の意味・解説 

有向集合

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/20 20:33 UTC 版)

数学における有向集合(ゆうこうしゅうごう、directed set)、有向前順序集合 (directed preordered set) あるいはフィルター付き集合 (filtered set) とは、空でない集合 A反射的かつ推移的二項関係(つまり前順序)≤ との組 (A, ≤) であって、さらに任意の二元が上界を持つ、すなわち A の任意の元 a, b に対して、A の元 cac かつ bc を満たすものが必ず存在するものをいう[1]

有向集合は空でない全順序集合の一般化、すなわち任意の全順序集合は有向集合となるが、一方で必ずしも全ての半順序集合が有向集合となるわけではない。位相空間論において有向集合はの概念を一般化する有向点族(ネット)の概念を定義するのに用いられ、それにより解析学で用いられる様々な極限の概念を統一的に扱うことが可能になる。有向集合から抽象代数学あるいはもっと一般の圏論における直極限の概念が生じる。

同値な定義

上記のものとは同値だが別な定義の仕方もある。すなわち、前順序集合 A の任意の有限集合が上界を持つとき、A は有向集合であるという。先の定義はこの定義を含意する。実際、空集合に対しては、A が空でないから A に存在する任意の元が空集合の上界になるし、空でない有限集合については、二元ごとの上界を求める操作を繰り返せば、その元の数に関する帰納法で上界の存在を示せる。

有向集合の例には以下のようなものが挙げられる。

  • 自然数全体の成す集合 N に通常の大小関係による順序 ≤ を入れたものは有向集合である(さらに全順序集合でもある)。
  • 自然数の対全体の成す集合 N × N に順序を

    有向集合は(結び)半束よりも一般の概念である。すなわち、任意の結び半束は、二元の結びをそれらの上限とみることにより有向集合となる。しかし逆は成り立たない。例えば {1000, 0001, 1101, 1011, 1111} にビットごとの順序(例えば 1000 ≤ 1011 は成り立つが 1000 ≤ 0001 は成り立たない)を入れた順序集合において、二元集合 {1000, 0001} は三つの上界を持つが、その中で最小のものは存在しない。

    有向部分集合

    有向集合における順序関係は、反対称であることを要求されないから、従って有向集合は必ずしも半順序ではない。しかし「有向集合」という用語を半順序集合の文脈で用いることも多く、その場合に半順序集合 (P, ≤) の部分集合 A有向部分集合 (directed subset) であるというのを、P における順序によって A 自身が有向集合となることと定める。言い換えれば、有向部分集合とは、でない部分集合で、任意の二元が上界を持つものをいう(ここで、A の元についての順序関係は P からくるものであるから、反射性と推移性を明示的に要求せずとも、実際にはそれらの性質が成り立っている)。

    半順序集合の有向部分集合は下方閉であることは要求しない。半順序集合の部分集合が有向部分集合であるための必要十分条件は、その下方閉包がイデアルとなることである。有向集合の定義は「上に有向な」集合(任意の二元が上界を持つ)に対するものになっているけれども、同様に任意の二元が下界を持つという「下有向集合」を定義することもできる。半順序集合の部分集合が下有向集合となるための必要十分条件は、その上方閉包がフィルターとなることである。

    有向部分集合は、有向完備半順序を研究する領域理論において用いられる[2]。有向完備半順序とは、その任意の上方有向集合が上限を持つような半順序集合である。この文脈では、部分有向集合はやはり収斂列の一般化を与える。

    関連項目

    • フィルター付き圏
    • Centered set
    • Linked set

    注記

    1. ^ Kelley 1975, p. 65.
    2. ^ Gierz, p. 2.

    参考文献

    • John L. Kelley (1975) [1955]. General topology. Graduate Texts in Mathematics, No. 27. Springer-Verlag, New York-Berlin. ISBN 978-0387901251 日本語訳: 児玉之宏 訳『位相空間論』吉岡書店〈数学叢書〉、1968年。 
    • Gierz, Hofmann, Keimel, et al. (2003), Continuous Lattices and Domains, Cambridge University Press. ISBN 0521803381.

有向集合

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/29 17:06 UTC 版)

有向点族」の記事における「有向集合」の解説

有向点族定義する為、まず有向集合を定義する詳細は有向集合の項目を参照。 定義(有向集合)空でない集合 A とA 上の二項関係「≤ 」の組 (A, ≤) が有向集合(ゆうこうしゅうごう、directed set)であるとは、「≤ 」が反射的かつ推移的(つまり前順序)で、しかもA の任意の二元上界を持つ事、すなわち任意の a, b ∈ A に対しあるc ∈ A が存在し a ≤ c かつ b ≤ c となる事をいう。

※この「有向集合」の解説は、「有向点族」の解説の一部です。
「有向集合」を含む「有向点族」の記事については、「有向点族」の概要を参照ください。

ウィキペディア小見出し辞書の「有向集合」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



有向集合と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「有向集合」の関連用語

有向集合のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



有向集合のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの有向集合 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの有向点族 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS