シューア補行列とは? わかりやすく解説

556の専門辞書や国語辞典百科事典から一度に検索! Weblio 辞書 ヘルプ
Weblio 辞書 > 辞書・百科事典 > 百科事典 > シューア補行列の意味・解説 

シューア補行列

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/29 05:13 UTC 版)

線型代数学関連分野におけるシューア補行列(シューアほぎょうれつ、: Schur complement; シューア補元)は区分行列に対して定義される。名称はイサイ・シューアシューアの補題の証明に用いたことに由来するが、それ以前からの使用が認められる[1]。これを Schur complement と呼び始めたのはエミリー・ヘインズワースである[2]。シューア補行列は数値解析 (特に数値線形代数) や統計学行列解析の分野では主要な道具の一つとなっている。

定義

行列 A, B, C, D のサイズをそれぞれ p × p, p × q, q × p, q × q として区分行列 カテゴリ




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「シューア補行列」の関連用語






6
14% |||||





シューア補行列のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



シューア補行列のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのシューア補行列 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS