有限生成加群とは? わかりやすく解説

有限生成加群

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/16 17:40 UTC 版)

数学において、有限生成加群(ゆうげんせいせいかぐん、: finitely generated module)とは、有限な生成集合をもつ加群のことである。有限生成 R-加群はまた有限 R-加群 (finite R-module, module of finite type) や R 上有限 (finite over R) とも呼ばれる[1]

関連した概念に、有限余生成加群 (finitely cogenerated module)、有限表示加群 (finitely presented module)、有限関係加群 (finitely related module)、連接加群 (coherent module) があり、これらはすべてあとで定義される。ネーター環上では、有限生成、有限表示、連接加群の概念は一致する。

たとえば上の有限生成加群とは単に有限次元ベクトル空間であり、有理整数環上の有限生成加群とは単に有限生成アーベル群である。

定義

R-加群 M が有限生成とは、M の元 a1, a2, ..., an が存在して、すべての M の元 x に対して、R の元 r1, r2, ..., rn が存在して、x = r1a1 + r2a2 + ... + rnan となることである。

この場合、集合 {a1, a2, ..., an} は M生成集合と呼ばれる。有限個の生成元は基底である必要はない、なぜならそれらは R一次独立である必要はないからだ。より圏論的な特徴づけとしては次がある。M は有限生成であるのは、ある自然数 n に対して全射 R-線型写像


有限生成加群

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/12 07:37 UTC 版)

環上の加群」の記事における「有限生成加群」の解説

加群 M が有限生成あるいは有限型であるとは、M の有限個の元 x1,...,xn で、それらの R-係数線型結合によって M の任意の元が書き表されるときに言う。

※この「有限生成加群」の解説は、「環上の加群」の解説の一部です。
「有限生成加群」を含む「環上の加群」の記事については、「環上の加群」の概要を参照ください。

ウィキペディア小見出し辞書の「有限生成加群」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「有限生成加群」の関連用語

有限生成加群のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



有限生成加群のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの有限生成加群 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの環上の加群 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS