ベクトルの共変性と反変性とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > ベクトルの共変性と反変性の意味・解説 

ベクトルの共変性と反変性

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/07 08:38 UTC 版)

多重線型代数テンソル解析における共変性: covariance)と反変性: contravariance)とは、ある幾何学的または物理的な対象に基底変換を施した際に、それがどのように変化をするかを表す。物理学では、基底は基準とする座標系の軸としばしば同一視される。

概要

ベクトル v赤色)の表現。
• 曲線上(黒色)の接基底ベクトル黄色、図左:e1, e2, e3
• 面(灰色)に対して法線をなす双対基底(青色, 図右: e1, e2, e3
一般の3次元曲線座標系英語版において、実空間上の数の組 (q1, q2, q3)によって示される。 基底とその双対基底は、基底が直交基底でない限りは一致しない[1]

座標系のスケール変換は単位系の変更に関連する。

たとえば長さのスケールを考える。単位をメートル m からセンチメートル cm に変更する、すなわち長さの基準を 1/100倍に変える。このとき、長さの値は100倍になる。同様に位置ベクトルや速度ベクトルの各成分も 100 倍となる。このように、座標系の基準スケールを変えたときに、基準の変化とは逆の変化を要請することを反変性という。

この種のベクトルは長さや長さと他の次元の積の次元を持つ。対照的にその双対ベクトル余ベクトルと呼ばれる)の次元は長さのか、それに別の次元を掛けたものになる。

双対ベクトルの例としては勾配が挙げられる。勾配は空間微分によって定義され、長さの逆の次元を持つ。双対ベクトルの成分は座標系のスケールが変わるときに同じ変化を要請する。これを共変性という。ベクトルおよび余ベクトルの成分は、一般の基底の変換に対しても同じような規則で変換される。

  • ベクトルが基底に依存しない不変量であるためには、ベクトルの成分は基底の変化を補うように反対に変換されなければならない。言い換えれば、ベクトルの成分を変換する行列は基底を変換する行列の逆行列になっていなければならない。このようなとき、ベクトルの成分は反変であるという。反変な成分を持つベクトルにはたとえば、観測者に対する物体の相対的な位置や、速度、加速度躍度など位置の時間微分がある。アインシュタインの縮約を用いると、反変成分は上付き添字を用いて以下のように表される。
カテゴリ



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ベクトルの共変性と反変性」の関連用語











ベクトルの共変性と反変性のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ベクトルの共変性と反変性のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのベクトルの共変性と反変性 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS