次元とは? わかりやすく解説

556の専門辞書や国語辞典百科事典から一度に検索! Weblio 辞書 ヘルプ
Weblio 辞書 > 同じ種類の言葉 > 自然科学 > 物理学 > 次元 > 次元の意味・解説 

次元

読み方:じげん

「次元」とは、「座標によって数学的に示される空間広がり」のこと、あるいは、「考え方立場能力質的な違い隔たり」を意味する表現である。また、物理学における「次元」は「重さ長さ時間の3要素組み合わせによって表現される物理量」のことである。

日常会話文脈では「平面」を指す意味で「2次元」、「立体」を指す意味で「3次元と言ったり、まるで太刀打ちできないほど程度に差があるさまを「次元が違う」と言ったりする。

サブカルチャー分野ではマンガ・アニメ作品ルパン三世」に登場するキャラクター次元大介」を指して「次元」と呼ぶことも多い。作中では主人公ルパンをはじめ多くキャラクター次元大介を「次元」と呼んでいる。

「次元」の基本的な意味

数学では「次元」は「ある空間どのように広がっているのか」を示すために使用する概念である。座標数値で示すことにより、特定の位置指し示すことができる。立体空間直行する3方向座標縦・横・高さ)によって示すことができる。つまり立体空間は「3次元」であることになる。

「次元」と「単位」の違い

物理学において、「次元」は「単位」と混同されやすい。

単位」とは、計測する際の基準してあらかじめ定められ特定の量、および、その呼び名のことである。基本的には、「長さ」の単位は「メートル(m)」、「重さ」の単位は「キログラムkg)」、「時間」単位は「秒(s)」が用いられる

「次元」とは、各種単位によって示される概念種類または性質ごとに総合した概念である。「メートル」や「秒」といった具体的な単位ではなく、「長さ(L)」「時間(T)」といった抽象的な括りが「次元」である。

単位」は一様ではなくさまざまな種類がある。たとえば長さの単位なら「cm」や「km」、あるいは「ydヤード)」「ftフィート)」などの単位がある。これらは、いずれも長さの単位」である。そして、その「長さ」という概念そのものが「次元」である。

においては長さ」は「L」、「重さ」は「M」、「時間」は「T」の記号表される

「次元」を含む熟語・言い回し

「次元が違う」

「次元が違う」とは、能力技量などに途方もない差や隔たりがあるさまを表現する意味で用いられる言い方である。比較ならないレベルが違う、スケールが違う、とうてい敵わない理解すらできない、といった感慨込めて用いられることが多い。

物事を扱う規模関与深さ桁違いであるさまなども「次元が違う」と表現されることがある。「異次元の~」と表現されることも多い。たとえば社会問題について、「対策強化して抑制すること」と「社会構造変革してそもそも発生しないようにする」ことは、同じ社会問題についての取り組みでがあるが、もはや次元が違う取り組みである。

「次元の案内人」

「次元の案内人」は、スマートフォン向けゲームアプリパズル&ドラゴンズ」(通称パズドラ)に登場するダンジョンクエスト)の名称である。「神秘の次元」カテゴリの中の、次元の案内人選択することで挑戦できる

パズドラの「次元の案内人」は、全13階層という長大ダンジョンであり、途中で敗北ゲームオーバー)した場合コンティニューできない、高難度クエストである。挑戦するにも入念な準備求められるそれだけ人気イベントでもある。

じ‐げん【次元】

読み方:じげん

数学で、一般的な空間広がり方の度合いを表すもの。座標の数で表される。線は一次元、面は二次元立体三次元空間三次元であるが、n次元や無限次元考えられる

物理量長さ時間質量の積の形で表示したもの。

物事考えた行ったりするときの立場また、その程度水準。「話の—が低い」「それとこれとは—の違う問題だ」


次元

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/08/25 14:31 UTC 版)

空間次元を模式的に表した図

次元(じげん、: Dimension)は、空間の広がりを表す一つの指標である。

直感的に言えば、ある空間内で特定の位置を指ししめすのに必要な変数の数が次元である。例えば平面上の位置を表すには、x座標とy座標、緯度と経度のような2つの変数が必要であるから、平面は2次元空間である。

dimension の訳語として「次元」という言葉が初めて見られたのは、1889年の藤沢利喜太郎による『数学に用いる辞の英和対訳字書』と言われる[1]

数学計算機において要素の配列の長さを指して次元ということもある。

自然科学においては、物理量の自由度として考えられる要素の度合いを言い、物理的単位の種類を記述するのに用いられる。

独立要素数

空間・時空

私たちの住む世界は共時的には3つの向きへの広がりをもった実3次元的な空間だととらえられる。また、時間は一方向的な実1次元的物理量だと考えられ、ニュートン力学では空間と時間は相互に独立な物理概念として取り扱われる。一方、相対性理論では光速を通じ時間の尺度と空間の尺度とは結びつけられ、符号(3, 1)の計量が入った実4次元の空間(ミンコフスキー空間)において現象が記述される。ただし、ミンコフスキー空間においても依然として時間軸は他の3つの空間軸とは性質の異なるものとしてとらえられることに注意しなければならない。

配列(プログラム)

コンピュータ言語において添字で指定できる一連の変数を配列(配列変数)と言うが、ひとつの配列で独立して指定できる添字の個数を配列の次元と言う。配列参照。

量の次元

ある量体系に含まれる次元とは、その体系において独立な基本量冪乗として表したものである。特に、国際量体系(ISQ)に基づく場合は、独立な基本量として7つの物理量が定められている。

次元論

数学では、次元は様々な数学的対象について異なる方法で定義されている。例えば、

などが挙げられる。次元の概念は多様であるが、基本はユークリッド空間 Rn の次元が n となることであり、局所的に Rn である空間の次元が n に一致することである。

現代的な次元の概念は、古典的な図形の幾何学がユークリッド空間内の点集合論として一般化される19世紀末から20世紀初頭に掛けて、ポアンカレブラウワーを萌芽としてメンガーやウリゾーンらの手によって可分距離空間に対して定式化された。区別のために被覆次元と呼ばれるこの次元の概念はルベーグによれば「可分距離空間 X の任意の有限開被覆に対して高々次数 n + 1 の細分がとれるとき、X の次元は高々 n である」として述べられ、X が高々 n 次元かつ高々 n − 1 次元でないとき Xn 次元であると定義される。たとえば被覆次元が 0 であるというのは、各点が開かつ閉なる近傍を持つことであると述べることができる。そして古典的な意味で次元 n であるユークリッド空間 Rn は被覆次元の意味でも n 次元になる。

転用表現

観点・尺度

あまりにもかけはなれた考え方、技量、性質を形容する際に「次元が違う」と表現することがある。特に、量の違いではなく質の違いがあることを指して「まったく別の要素(次元)を取り入れないと理解できない」ということを意味することが多い。かけはなれていることを意味する「次元」は、多くの場合で「世界」に置き換えが可能である。(例: 世界が違う)

世界

SFファンタジーなどの創作作品においてしばしば用いられる「次元」は、それぞれの世界に働く根源的な要素の集まりのことを指すことが多い。転じて、ある根源的な要素を基調とする世界のことも次元と称されることもある。

根源的な要素という意味の次元には、ある世界に存在しないまったく異なる要素も含まれる。そのような要素を持っている世界と持っていない世界とでは、世界の仕組みや過ごし方がまったく異なる。このため、世界の根源をなす要素が異なる(異次元の)世界同士は、異次元世界(または単に「異次元」)と呼称される。例えば、我々が過ごしている3次元空間の世界では、空間内を動くことによって移動が行われるが、魔法などによって移動が行われる世界では、我々の過ごす世界と根源となる要素が大きく異なっていると考えられる。このような場合において、「双方の世界は、異次元である」「双方は、異次元世界である」などと表現する。

また、異次元世界(異次元)という用語は、「異なった根源的な要素による世界」という意味の転用として、別世界、別天地、亜空間、異世界、パラレルワールドなどとほぼ同義に用いられる。

架空世界・架空人物

次元という語は、視覚メディアなどで提示される架空の世界を現実の世界から区別する用語として使用されることがある。具体的には、奥行き情報を込めずに構成される架空世界を「2次元世界」、物理空間における現実世界を「3次元世界」と呼称することがある。

また、漫画やアニメーションのキャラクターなど、伝統的に平面的なメディアの上で視覚化されてきたキャラクターを「2次元キャラクター」などと呼ぶことがある。

文字コード

文字コードにおける次元とは、符号化文字集合内の符号点を、いくつかの組に分けて示すときの組の数をいう。

古くはEBCDICASCIIを示す際に、その表を16文字ずつ程度に区切って(すなわち、下位4ビットと残りの上位桁、といったふうに)並べたりするなど、自然に2次元として扱っていたりしたものであるが、仕様書中における記述としてたとえば 'A' のコードを 4/1 といったように記したり、JIS X 0208などで「区」「点」という概念と用語が使われるなど、明確に階層的なものが使われるようになっていた。一方でUnicodeにおいて符号位置(Unicodeにおいて符号点を指す用語)を示す整数「Unicodeスカラ値」は、その名の通り1次元のスカラ値である。

Unicodeはそのように1次元の符号点を定義する一方で、1980年代当初からUnicode関係者内外から指摘されていたような理由により、漢字において「Three-Dimensional Conceptual Model」というものを導入する必要が生じた。つまり、符号位置を表現する座標の次元とは直交する軸がある、というもの(そして現在では、漢字の場合は異体字セレクタ(Variation Selectors)の一つであるIdeographic Variation Selectorsで選ばれるもの)である。このような事情などもあり、後述するようにISO 10646では次元の構造が強調されることとなった。

このような「組」およびそれを元にした「次元」の概念は、さまざまな文字コードの規格に現れており、それらの規格書において、2次元の符号空間は物理的な2次元の図[注釈 1]で、3次元の符号空間は物理的な3次元の図を使って説明されていることがある。また、各数字は8ビットに収まる256以下、あるいはその半分の128、ISO 2022系のように96や94のこともある。

ISO/IEC 10646における次元

このような意味での次元の概念を最も整備された形で規格書に明記しているのはISO/IEC 10646である。ISO/IEC 10646の規格書では、以下のように記述されている[2]

  • ISO/IEC 10646の符号空間全体は4次元の空間であり、それは128個の群から構成される。
  • 群は3次元の符号化空間であり、一つの群は256個の面から構成される。
  • は2次元の符号化空間であり、一つの面は256個の区から構成される。
  • 区は1次元の符号化空間であり、一つの区は256個の点(符号点)から構成される。

その結果ISO/IEC 10646での符号位置は、「群・面・区・点」の4つの要素から構成されるが群が00群であるときは群の記述を、さらに00群において面が00面であるときには群だけでなく面も省略して表記されることがある。ISO/IEC 10646のこのような構造はUnicodeを取り入れて大幅に内容が変わる前のDIS 10646第1版からのものである。ISO/IEC 10646の規格書ではこのような構造を空間的な三次元の図にして説明を加えており[3][4]、各面の詳細なコードマップを二次元の図にして説明を加えている[5][6][7]

ISO/IEC 2022における次元

ISO/IEC 2022に準拠した図形文字集合には、シングルバイトの文字集合(94文字集合及び96文字集合)と複数バイト文字集合があるが、複数バイト文字集合も、単に一次元で表される巨大な符号空間が存在するのではなくは94文字集合または96文字集合を複数組み合わせる構造をもっており、これを「次元」と呼ぶことがある。なお、ISO/IEC 2022準拠の文字コードのうちCNS 11643JIS X 0213のような複数の「面」を持つものは、規格自体は複数の面を持つ「三次元」であるが、ISO/IEC 2022の国際登録簿には二次元の個々の「面」ごとに異なる登録番号で登録されている。

さまざまな文字コードにおける次元

  • 以下のような数字の組が群・面・区・点の4つからなる体系は4次元の文字コードと呼ばれる。
  • 以下のような数字の組が面・区・点の3つからなる体系は3次元の文字コードと呼ばれる。
  • 以下のような数字の組が区・点の2つからなる体系は2次元の文字コードと呼ばれる。マルチバイト文字コードの多くは2次元の文字コードである。

ASCIIISO/IEC 646のようないわゆるシングルバイト文字コードを特に1次元の文字コードと呼ぶことがある。

脚注

注釈

  1. ^ このようなものは「コードマップ」と呼ばれることがある。

出典

  1. ^ 宮崎興二『4次元図形百科』丸善出版、2020年、44頁。ISBN 978-4-621-30482-2 
  2. ^ 「図1 国際符号化文字集合の全体構造」『JIS X 0221:2007』p.. 7-10
  3. ^ 「図1 国際符号化文字集合の全符号化空間」『JIS X 0221:2007』p.9
  4. ^ 「図2 国際符号化文字集合の群99」『JIS X 0221:2007』p.10
  5. ^ 「基本多言語面の概観」『JIS X 0221:2007』p.41
  6. ^ 「用字及び記号群に用いる追加多言語面の概観」『JIS X 0221:2007』p.43
  7. ^ 「追加漢字面の概観」『JIS X 0221:2007』p.44

参考文献

  • 『JIS X 0202:1998』日本規格協会(ISO/IEC 2022の国際一致規格)
  • 『JIS X 0221;2007』日本規格協会(ISO/IEC 10646の国際一致規格)

次元

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/03/13 08:04 UTC 版)

ルパン三世 パンドラの遺産」の記事における「次元」の解説

攻撃方法は銃で、画面端まで弾が届き3連射まで可能、さらにジャンプ中でも発砲可能とルパン攻撃性能を大幅に強化した性能

※この「次元」の解説は、「ルパン三世 パンドラの遺産」の解説の一部です。
「次元」を含む「ルパン三世 パンドラの遺産」の記事については、「ルパン三世 パンドラの遺産」の概要を参照ください。

ウィキペディア小見出し辞書の「次元」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

「次元」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



次元と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「次元」の関連用語

次元のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



次元のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
実用日本語表現辞典実用日本語表現辞典
Copyright © 2025実用日本語表現辞典 All Rights Reserved.
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの次元 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaのルパン三世 パンドラの遺産 (改訂履歴)、行空間 (改訂履歴)、ドラゴン曲線 (改訂履歴)、関東裸会 (改訂履歴)、代数幾何学用語一覧 (改訂履歴)、ゴリパラ見聞録 (改訂履歴)、カスプ形式 (改訂履歴)、代数多様体 (改訂履歴)、ネーター環 (改訂履歴)、列空間 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS