フラクタル幾何とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 幾何学 > 幾何 > フラクタル幾何の意味・解説 

フラクタル幾何

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/01/15 04:25 UTC 版)

フラクタル幾何(フラクタルきか)とは、簡単に言えば「どんなに拡大しても複雑な図形」のことをさす。フラクタル図形とも呼ばれる。

フラクタル幾何に関する理論は、そのほとんどが一人の数学者ブノワ・マンデルブロ(Benoit Mandelbrot)によって創作された。彼は海岸線やひび割れの形、樹木の枝分かれなどに見られる複雑な図形を数学的に理論化した。

定義

正確に定義するならば、集合 Kフラクタルであるとは、K位相次元 dimT(K)と Kハウスドルフ次元 dimH(K) に対して、

dimT(K) < dimH(K)

が成り立つことである。一般の図形では、

dimT(K) ≤ dimH(K)

が成り立つことが知られている。 集合 K がフラクタルであるとき一般に dimH(K) は 0 以上の実数値になり、その値を Kフラクタル次元と呼ぶ。

自己相似図形

フラクタル次元、ひいてはハウスドルフ次元の計算は一般にはとても大変である。しかし自己相似図形と呼ばれる図形に対しては簡単な計算法がある。自己相似図形とは自分自身のミニチュアがそっくりそのまま自分の中に入っているような図形であり、例としては次のようなものがある。

相似次元

自己相似図形に対して、相似次元 d は次のように定義される。

自分自身がサイズ 1/n のミニチュア m 個から成り立っているとき、
d = lognm
である。

これは要するに、

  • 正方形は半分のサイズの正方形 4 個でできている → 正方形は 2 次元
  • 立方体は半分のサイズの立方体 8 個でできている → 立方体は 3 次元

といった考え方である。 自己相似図形に対して、その相似次元とフラクタル次元は一致する。 上の例で言えばたとえば、コッホ曲線は 1/3 のミニチュア 4 個でできているので、 そのフラクタル次元は log34 = 約1.26 となる。

通常の線は1次元、面は2次元なので、コッホ曲線が単純な線よりは少し複雑な図形であると、フラクタル次元を使うことで示すことが出来る。このようにフラクタル次元は図形の複雑さを数値で表していると言える。 異なるサイズのミニチュアが集まってできているときには計算が少し複雑になるが、同じような考え方で計算できる。

関連項目

参考文献


「フラクタル幾何」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



フラクタル幾何と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「フラクタル幾何」の関連用語

フラクタル幾何のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



フラクタル幾何のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのフラクタル幾何 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS