エウクレイデスとは? わかりやすく解説

エウクレイデス【Eukleidēs】

読み方:えうくれいです

ユークリッドギリシャ語名。


エウクレイデス【Eukleidēs】

読み方:えうくれいです

400年ごろのギリシャ哲学者ソクラテス弟子で、メガラ学派創始者


エウクレイデス 【Eukleides】

前五~四世紀のギリシア哲学者ソクラテス弟子パルメニデスエレア学派)の書も読み両者の説を合わせて自説とした。「善は一つである。それが、ときには知慧、ときには神、ときには理性と、そしてその他多くの名でよばれる」と主張反対者論争を展開、「喧嘩好きのエウクレイデス」といわれた。メガラの町に住んだのでその派はメガラ学派呼ばれ争論術研究知られた。(生没年不詳

エウクレイデス

名前 Eukleidēs; Eucleides; Euclid

エウクレイデス

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/12 03:05 UTC 版)

アレクサンドリアの
エウクレイデス
エウクレイデス(の後世の想像図)
居住 プトレマイオス朝(現・エジプトアレクサンドリア
研究分野 数学
主な業績 ユークリッド幾何学
ユークリッド原論
プロジェクト:人物伝
テンプレートを表示
ラファエロの壁画「アテナイの学堂」に画かれたエウクレイデス

アレクサンドリアのエウクレイデス古代ギリシャ語: Εὐκλείδης, Eukleídēsラテン語: Euclīdēs英語: Euclidユークリッド)、紀元前3世紀?)は、古代エジプトギリシャ系数学者天文学者とされる。数学史上の重要な著作の1つ『原論』(ユークリッド原論)の著者であり、「幾何学の父」と称される。

エウクレイデスはギリシャ語読み[1][2][3][4][5]ユークリッドは英語読み[1][2][3][4][5]

プトレマイオス1世治世下(紀元前323年-283年)のアレクサンドリア(現在のエジプト領アレクサンドリア)で活動した。『原論』は19世紀末から20世紀初頭まで数学(特に幾何学)の教科書として使われ続けた[6][7][8]。線の定義について、「線は幅のない長さである」、「線の端は点である」など述べられている。基本的にその中で今日ユークリッド幾何学と呼ばれている体系が少数の公理系から構築されている。エウクレイデスは他に光学透視図法円錐曲線論球面天文学、誤謬推理論、図形分割論、天秤、 などについても著述を残したとされている。

確実に言えることは、彼が古代の卓越した数学者で、アレクサンドリアで数学を教えていたこと、またそこで数学の一派をなしたことである。ユークリッド幾何学の祖で、原論では平面・立体幾何学、整数論、無理数論などの当時の数学が公理的方法によって組み立てられているが、これは古代ギリシア数学の一つの成果として受け止められている。

生涯

エウクレイデスは紀元前330年頃から紀元前275年頃を生きたとされるが、その生涯についてはほとんど何もわかっていない。実際、主要な文献はエウクレイデスの数世紀後のプロクルスパップスの著作しかない[9]。プロクルスのエウクレイデスについての記述は『ユークリッド原論第1巻注釈』に簡単にあるだけで、これは紀元5世紀に書かれたものである。それによると、エウクレイデスは『原論』の著者で、アルキメデスが彼に言及しており、プトレマイオス1世が彼に「幾何学を学ぶのに『原論』よりも近道はないか?」と聞いたところ、彼は「幾何学に王道なし」と答えたとされている。アルキメデスによるエウクレイデスへの言及と称されるものは、後世の編集による挿入だと見られているが、エウクレイデスの著作がアルキメデスの著作より古いことは確実とされている[10][11]。「王道」の逸話も、メナイクモスアレクサンドロス3世の逸話にそっくりであり、本当かどうか疑問がある[12]

もうひとつの重要な文献としてパップスのものがあるが、こちらにはペルガのアポロニウスについて言及する際に「(彼は)アレクサンドリアのエウクレイデスの弟子たちと長く一緒に過ごし、そこでそのような科学的思考法を身につけた」とある[13]

その他に有名な逸話としては、ユークリッドに数学を学んでいたある男が「これらの命題をすることで何の役に立つのですか」と言う問いに対し、使用人を呼び「この男にお金を与えなさい。彼は学んだものから利益を得ようとしているから」と答えた。当時の数学の目的は何か実用に役立つためのものではなく「それ自身の美しさのため」にあったのである。

16世紀後半になると、エウクレイデスの著作はイエズス会を通じて中国のにも伝えられた。イエズス会士のマテオ・リッチは、徐光啓との共同作業を通じて著作を漢訳し、1607年に『幾何原本』を刊行した。

実在性

エウクレイデスという名はギリシア語で「よき栄光」を意味する。「原論」の内容が、1人で書くにしてはあまりに膨大であることから、その実在を疑う説もあり、それによると『原論』は複数人による共著であり、エウクレイデスは共同筆名とされる[14]

エウクレイデスは、生没年も死因も一切不明であり、同時代人の有名人との関係からおおまかに推測されているだけである。肖像や外見の記録も後世に伝わっていないことから、エウクレイデスとされる絵や彫像は全て、芸術家たちによる想像図である。

ローマバチカン宮殿にあるラファエロの有名な壁画「アテナイの学堂」にも、プラトンとアリストテレスが降りてくる階段の足元で、コンパスを使って図形を描いている姿が描かれている。

著作

原論

エウクレイデスの『原論』の最古の写本の断片。オクシリンコスで見つかったもので、紀元100年ごろのものとされている。描かれている図は第2巻命題5のもの[15]

『原論』に書かれていることの多くはもっと以前の数学者の成果に由来するが、エウクレイデスの功績はそれらを1つにまとめて提示し、一貫した論理的枠組みを構築して厳密な数学的証明を行っている点にある[16]

現存する初期の『原論』の写本にはエウクレイデスへの言及がなく、多くの写本には「テオンの版より」あるいは「テオンの講義集」とある[17]。また、バチカンが保管している第一級の写本には、作者についての言及が全くない。エウクレイデスが『原論』を書いたとする際の唯一の根拠は、プロクルスの注釈本である。

『原論』には幾何学だけでなく、数論についての記述もある。完全数メルセンヌ数の関係、素数が無限に存在すること、因数分解についてのユークリッドの補題(ここから素因数分解の一意性についての算術の基本定理が導かれる)、2つの数の最大公約数を捜すユークリッドの互除法などが含まれる。

『原論』にある幾何学体系は長い間単に「幾何学」と呼ばれ、唯一の幾何学だとみなされており、論証に穴はないと思われていた。しかし、19世紀の「非ユークリッド幾何学」の発見をきっかけに、数学の基礎がより整備されると、幾何学には様々な体系が可能であること、ユークリッドの公理系には不足している公理があることが判明した。公理的な体系の作り方も見直され、「公理」「公準」はともに公理とされ、例えば「点」の定義のように、証明の中で用いられない定義は姿を消した。『原論』の議論には、現代的な視点からは無用な遠回りも散見される。こういった違いは、必ずしも全て不備によるものではなく、当時の幾何学についての考え方が現在と異なっていたことが指摘される。

今では、ユークリッドが対象とした幾何学を、現代的に見直したものを「ユークリッド幾何学」と呼ぶ。

その他の著作

オックスフォード大学自然史博物館にあるエウクレイデスの像

『原論』に加えて、エウクレイデスの著作とされているものが5作現存している。いずれも『原論』と論理構造は同じであり、定義と命題の証明で構成される。

デドメナ/ダータ (Data)
幾何問題における与えられた情報の性質と意味を扱っている。その主題は『原論』の最初の4巻と密接に関連している。
図形分割論 (On Divisions of Figures)
アラビア語訳が部分的に現存している。幾何学図形を指定されたで2つ以上に分割する問題を扱っている。紀元3世紀ごろのアレクサンドリアのヘロンの著作に似ている。
カトプトリカ (Catoptrics)
鏡についての数学的理論、特に平面鏡や球面の凹面鏡の上に形成される像についての著作である。エウクレイデスの著作かどうかは疑わしい。アレクサンドリアのテオンの作とする説もある。
パエノメナ (Phaenomena)
球面天文学についての論文で、ギリシャ語版が現存している。紀元前310年ごろ活躍したピタネのアウトリュコスの『運動する球体について』に酷似している。
オプティカ (Optics)
透視図法についての最古の現存するギリシャ語の著作。この中では視覚は目から出ている離散的な光線によるものだというプラトン学派の説を踏襲している。重要なのは4番目の定義で、「より大きな角度で見える物は大きく、より小さな角度で見える物は小さく、同じ角度で見える物は同じである」としている。その後の36の命題で、物体の見た目の大きさと距離とを関係付け、様々な角度から円柱と円錐を見たときの見え方を考察している。命題45では、実際の大きさが異なる2つの物体があるとき、それらが同じ大きさに見える地点が必ず存在するとしている。パップスはこれを天文学においても重要だと考え、エウクレイデスのオプティカをパエノメナと共に、クラウディオス・プトレマイオスの『アルマゲスト』の前に学ぶべきものとした。

次に挙げる著作はエウクレイデスのものとされているが、現存しない。

円錐曲線論 (Conics)
円錐曲線についての著作で、後にペルガのアポロニウスがこの主題を発展させた。アポロニウスの初期の4作はエウクレイデスの著作に基づいていると見られる。パップスによれば、「アポロニウスはエウクレイデスの円錐曲線についての4巻に自身の4巻を追加し、『円錐曲線』全8巻を完成させた」としている。アポロニウスの著作は瞬く間に広まり、パップスのころにはエウクレイデスの著作は既に現存しなかった。
ポリスマタ (Porisms)
円錐曲線についての著作から派生した内容という説もあるが、詳しいことは書名の意味も含めてよく分かっていない。
誤謬推理論 (Pseudaria または Book of Fallacies)
推論上の誤り(誤謬)についての初歩的教科書。
曲面軌跡論 (Surface Loci)
平面上の軌跡 (loci) または、何らかの曲面をなす軌跡を扱ったものと見られる。二次曲面を扱っていたという説もある。

アラビア語の文献によれば、エウクレイデスは力学に関する著書も残していたという。On the Heavy and the Light には9つの定義と5つの命題があり、アリストテレス学派の物体の運動と比重の概念を扱っていた。On the Balance ではてこを扱っている。また、別の断片ではてこの先端が描く円について論じている。これら3つの断片は相互に補い合っていることから、エウクレイデスが書いた力学についての1つの著作の断片ではなかったかという説も示唆されている。

日本語訳

脚注・出典

  1. ^ a b エウクレイデス”. コトバンク. 2024年6月4日閲覧。
  2. ^ a b 光の直進や反射の法則を発見した科学者”. Canon. 2024年6月4日閲覧。
  3. ^ a b ユークリッド とは”. goo辞書. 2024年6月4日閲覧。
  4. ^ a b ユークリッド(ギリシア名:エウクレイデス)”. Mathematicaマテマティカ. 2024年6月4日閲覧。
  5. ^ a b 上垣渉(インタビュー)「図形教材の原典『原論』から教材研究を深めよう!」『明治図書オンライン「教育zine」』、2014年7月17日https://www.meijitosho.co.jp/eduzine/interview/?id=201406982024年7月22日閲覧 
  6. ^ Ball 1960, pp. 50–62
  7. ^ Boyer 1991, pp. 100–19
  8. ^ Macardle, et al. (2008). Scientists: Extraordinary People Who Altered the Course of History. New York: Metro Books. g. 12.
  9. ^ Joyce, David. Euclid. Clark University Department of Mathematics and Computer Science.
  10. ^ Morrow, Glen. A Commentary on the first book of Euclid's Elements
  11. ^ Euclid of Alexandria. The MacTutor History of Mathematics archive.
  12. ^ Boyer 1991, p. 1
  13. ^ Heath 1956, p. 2
  14. ^ Itard 1961, pp. 9–12
  15. ^ Bill Casselman. “One of the Oldest Extant Diagrams from Euclid”. University of British Columbia. 2008年9月26日閲覧。
  16. ^ Struik 1967, p. 51 ("their logical structure has influenced scientific thinking perhaps more than any other text in the world").
  17. ^ Heath 1981, p. 360

参考文献

Euclides, 1703

関連項目

外部リンク


エウクレイデス(ユークリッド)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/30 17:58 UTC 版)

外送理論」の記事における「エウクレイデス(ユークリッド)」の解説

最古まとまった幾何学的な視線理論は、紀元前3世紀ころ、エウクレイデスの著した視学光学)』『反射視学反射光学)』である。 『視学光学)』においては、エウクレイデスは視線有限の幅をもつ射線とし、それらは相互に隙間持って放たれるとした。遠方においては隙間多くなるゆえに視覚明瞭なくなり隙間落ちたものは見えなくなる。本書冒頭部分では、これによって、「四角形遠方から見ると角が丸まって見える」ことを説明した原子論者ストア派が、距離による劣化説明したに対して、このエウクレイデスの説明は、新たな幾何学的な視点付け加えた。こうして視覚明瞭さ議論したのち、視線の間の角度見かけの大きさ比例する仮定して遠近法的な問題測量問題論じる。 本書は、色覚眼の機能触れとこはなく、視線物理的な実体や、どのように視覚情報が眼まで運ばれるのかといった点については、述べことはない。冒頭視覚明瞭さ関わる一連の議論除けば視線単なる直線解して問題はない。特に、テキストAとよばれる系統写本では、視線物理的な性質触れ場合でも、中立的な意味合いの用語を選んでいる。これらのことから、物理的議論から自由な理論構築目指した、という見解古代でも現代でもある。ただし、いずれの解釈をとるにせよ、視覚明瞭さ議論では視線向きを外すことは難しい。 『反射視学反射光学)』については、エウクレイデスの著作かどうか疑う見解もある。本書では、視線反射の法則述べ様々な鏡による像の歪み論じる。この際論じられるのは、眼に映る二次元的な像ではない。「どのような立体存在していると錯覚されるか」を論じのである。たとえば、平面鏡であれば左右奥行き反転させた物体があると我々は知覚する。凸球面鏡であれば、やや歪んで小さくなった物体実際よりも近くにあると感じる。この問題を解くには、反射の法則だけでは明らかに足りず奥行き認識についての規則が必要である。本書では、平面鏡の他に凸および凹の球面鏡扱っている。 本書文言論証構成は必ずしも明瞭でなく、意図不明な箇所もある。例えば、命題30では光線集中Burning mirror)を扱っているが、誤った主張であって証明一貫せず後世付加可能性もある。本書冒頭には、用いられる原理列挙されるが、4番目と5番目のものの意味するところについては、解釈分かれるまた、最後の6番目の原理屈折について触れ、「器に満たすと、器の底に置かれたものが浮き上がって見える」と述べているが、以降命題の証明には用いらない。 反射の法則は、『視学光学)』でも用いられる命題19)。また、反射視学反射光学)』では、この命題19言明基本的な法則として掲げ反射の法則逆にそこから証明している。

※この「エウクレイデス(ユークリッド)」の解説は、「外送理論」の解説の一部です。
「エウクレイデス(ユークリッド)」を含む「外送理論」の記事については、「外送理論」の概要を参照ください。

ウィキペディア小見出し辞書の「エウクレイデス」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



エウクレイデスと同じ種類の言葉


固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「エウクレイデス」の関連用語

エウクレイデスのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



エウクレイデスのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
中経出版中経出版
Copyright (C) 2025 Chukei Publishing Company. All Rights Reserved.
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのエウクレイデス (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの外送理論 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS