C 言語とは? わかりやすく解説

C++

(C 言語 から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/04/29 09:38 UTC 版)

C++
C++のロゴ
パラダイム 手続き型プログラミングデータ抽象化オブジェクト指向プログラミングジェネリックプログラミング[1]
登場時期 1983年 (42年前) (1983)
開発者 ビャーネ・ストロヴストルップ 
最新リリース ISO/IEC 14882:2024/ 2024年10月19日 (6か月前) (2024-10-19)
評価版リリース ISO/IEC 14882:2026 (予定) / 2024年10月16日 (6か月前) (2024-10-16)
型付け nominative, 安全でない強い静的型付け
主な処理系 GCCClangMicrosoft Visual C++Intel C++ CompilerC++ Builder
影響を受けた言語 C言語Simula、ALGOL 68、CLUMLAda 
影響を与えた言語 JavaRustC#C++/CLID言語PHP
ウェブサイト isocpp.org
拡張子 .C、 .cc、 .cpp、 .cxx、 .c++、 .h
テンプレートを表示

C++シープラスプラス)は、汎用プログラミング言語のひとつである。派生元であるC言語の機能や特徴を継承しつつ、表現力と効率性の向上のために、手続き型プログラミングデータ抽象オブジェクト指向プログラミングジェネリックプログラミングといった複数のプログラミングパラダイムが組み合わされている[1]。C言語のようにハードウェアを直接扱うような下位層向けの低水準言語としても、複雑なアプリケーションソフトウェアを開発するための上位層向け高水準言語としても使用可能である。アセンブリ言語以外の低水準言語を必要としないこと、使わない機能に時間的・空間的コストを必要としないことが、言語設計の重要な原則となっている[2][3]

C++は、1983年にAT&Tベル研究所の計算機科学者ビャーネ・ストロヴストルップによって公開された。また様々なプラットフォームでその開発環境が導入された。1998年からISOIECの共同で言語仕様とテンプレートライブラリの標準化が行われるようになり、その後2003年、2011年、2014年、2017年、2020年に標準規格が改訂されている。2021年時点での最新規格は「ISO/IEC 14882:2020」通称「C++20」である。

歴史

ストロヴストルップはプログラミング言語C with Classes(クラス付きのC言語)の開発を1979年に開始した。彼は大規模なソフトウェアの開発に有用な特徴をSimulaが備えていることに気がついたが、Simulaは実行速度が遅く実用的ではなかった。一方でBCPLは実行速度こそ速かったものの、大規模なソフトウェア開発を念頭に置いた場合にあまりにも低級だった。

これらの事情を鑑みて、ストロヴストルップは当時既に汎用的な言語だったC言語にSimulaの特徴を取り入れることを試みた。この取り組みにあたってはALGOL68AdaCLUML等の言語の影響も受けている。最初はクラスと派生クラス、型検査機構の強化、インライン関数、デフォルト引数の機能を、Cfrontを介してC言語に追加した。1985年10月に最初の商用リリースがなされた[4]

1983年にはC with ClassesからC++に名称を変更した。この際に、仮想関数と、関数と演算子の多重定義参照型、const型、ユーザー制御可能な自由領域メモリ制御、型検査機構の改良、BCPL形式の(「//」による)行単位のコメントなどの機能が追加された。1985年には『The C++ Programming Language』の初版が出版された(邦訳『プログラミング言語C++』1988年))。この時点では公式な標準が策定されていなかったために、この本が事実上のリファレンスとなった。1989年C++のバージョン2.0として、多重継承抽象クラス、静的メンバ関数constメンバ関数、protectedメンバ等の機能が追加されたものがリリースされた。1990年に『The Annotated C++ Reference Manual (ARM)』[5](邦訳『注解C++リファレンスマニュアル』[6])が出版され、将来の標準化の土台となるものを提供した。後に追加された機能にはテンプレート例外処理名前空間、新形式のキャストブール型が含まれた。

ARMが事実上の標準として使われた時代が続いたが、標準化が進んだ。C++言語の最初の標準は1998年にISO/IEC 14882:1998として承認された。2003年の改訂版を経て、2011年にメジャーアップデートとして制定されたのがISO/IEC 14882:2011、通称「C++11」である。このバージョンは、元々、非公式に「C++0x」と呼ばれていた。2000年代中に制定され、正式に「C++09」と呼称されることを見越した仮称だったが、2000年代中には実現しなかった。2011年8月10日まで続いた最終国際投票で C++0x は全会一致で承認された。これにより C++0x と呼ばれてきた C++ の次期改正案はついに国際標準になり、C++11と呼べるようになった。また、2014年にはISO/IEC 14882:2014、通称「C++14」が策定された。2017年にはISO/IEC 14882:2017、通称「C++17」が策定された。2020年にはISO/IEC 14882:2020、通称「C++20」が策定された。

C++言語の進化に伴い、標準ライブラリもまた進化していった。C++標準ライブラリに最初に追加されたのは、従来のC言語の printf()scanf() といった関数を置き換えるストリームI/Oライブラリである。また、C++98における標準ライブラリへの追加で最も重要なものはStandard Template Library (STL) である。C++11では、正規表現による検索・置換や複数スレッドでの同時実行、ハッシュテーブル・ハッシュセットの追加などさらなる拡充が続いている。

国際規格

規格出版日 C++ 国際規格 非公式名称 対応する日本工業規格
1998年9月1日 ISO/IEC 14882:1998[7] C++98
2003年10月16日 ISO/IEC 14882:2003[8] C++03 JIS X 3014:2003
2007年11月15日 ISO/IEC TR 19768:2007[9] C++TR1
2011年9月1日 ISO/IEC 14882:2011[10] C++11
2014年12月15日 ISO/IEC 14882:2014[11] C++14
2017年12月 ISO/IEC 14882:2017[12] C++17
2020年12月15日 ISO/IEC 14882:2020[13] C++20

長年にわたる作業の後、ANSIとISOの合同委員会はプログラミング言語C++を1998年に標準化した (ISO/IEC 14882:1998)。1998年の標準の公式なリリースから数年間にわたって委員会は不具合の報告を続け、2003年に改訂版を出版した。2003年12月に制定された日本工業規格(現:日本産業規格JIS X 3014:2003「プログラム言語C++」日本産業標準調査会経済産業省)は、ISO/IEC 14882:2003 (E) の日本語訳である。

2007年11月15日、C++ Technical Report 1 (TR1) という技術報告書(テクニカルレポート)がリリースされた。これは規格の公式な一部ではなかったが、次の版のC++に含まれると期待される、標準ライブラリへの数多くの拡張を与えた。TR1の内容は、多少の修正を加えてC++11に取り込まれている。

2011年9月1日、C++98以来初の大きな改訂となるISO/IEC 14882:2011が発行された。

2014年8月18日、ISO/IEC 14882:2014 (C++14) が投票で承認され[14]、同年12月15日に公式に出版された。

2017年12月1日、ISO/IEC 14882:2017 (C++17) が公式に発行された。

2020年9月4日、ISO/IEC 14882:2020 (C++20) が投票で承認され[15][16]、同年12月15日、ISO/IEC 14882:2020 (C++20)に公式に出版された[17]

C++20に続いて次期改訂版となるべきISO/IEC 14882:2023 (C++23) [18]の仕様策定については、2019年末から始まったCovid-19世界的流行により開発者同士の対面によるミーティングの開催を図ることが大変難しくなったことから[19][20][21]、仕様策定が非常に難航している状況である。

将来

C++に対しては、今もなお要望が絶えない。特にBoost C++ライブラリを開発しているBoostコミュニティはC++の方向性の決定に大きく貢献し、さらにC++標準化委員会へ改良すべき点などを意見している。現在はマルチパラダイムプログラミングをより自然に行えるようにすることに力が注がれており、たとえばBoostでは、C++の関数型プログラミングメタプログラミングの可能性を模索している。

C++11と呼ばれている新しいバージョンのC++標準ではこれらの一部が取り込まれ、今後のC++でもさらなる追加が行われると見られている。

C++という名称

C++という名称はRick Mascittiの功績で、最初に使用されたのは1983年の12月である[要出典]。初期の研究期間では、開発中の言語は「C with Classes」と呼ばれていた。最終名は、変数の値を一つ加算する、C言語の++インクリメント)演算子からの派生である。また一般的な命名規則での「+」の使用は、機能強化されたコンピュータプログラムを意味する。ストロヴストルップによれば「この名前は、C言語からの変更の革新的な本質を示している」ということである。C+は、より初期の無関係なプログラミング言語の名前である[要出典]

ストロヴストルップは著書『The C++ Programming Language』の前文で名前の起源を語り、ジョージ・オーウェルの小説『1984年』の付録から「C++」が連想されるかもしれないと付け加えている。ニュースピークという架空の言語の解説に宛てられた3つの章の中に、科学技術に関する専門用語とジャーゴンの解説に宛てられた「C vocabulary」という章がある。ニュースピークで「ダブルプラス」は最上級の修飾語である。ゆえにニュースピークで「C++」は「最も極端な専門用語またはジャーゴン」という意味になるだろう。

1992年、Rick Mascittiは名前について非公式に質問されると、彼はおふざけのつもりで命名したという旨の回答をした。彼はこの言語の正式な名称になるとは夢にも思っていなかった[要出典]

哲学

ビャーネ・ストロヴストルップは著書『C++の設計と進化(1994)』でC++を設計する際に用いたルールを述べている。

  • C++はCと同等の実行効率と移植性を持つ静的に型付けされた汎用言語である。
  • C++は直接的かつ包括的に複数のプログラミングスタイル(手続き型プログラミング抽象化オブジェクト指向ジェネリックプログラミング)をサポートする。
  • C++はもしプログラマが間違っている可能性があったとしてもプログラマに選択の余地を与える。
  • C++は可能な限りC言語との互換性を持ち、C言語からスムーズに移行できる。
  • C++はプラットフォームに固有な機能や汎用的でない機能の実装を避ける。
  • C++は利用しない機能についてはオーバーヘッドが生じない(ゼロオーバーヘッドの原則)。
  • C++は高級な実行環境を必要としない。

C++のコンパイラがどのようにコードを出力しメモリのレイアウトを決めるのかということについては『Inside the C++ Object Model』(Lippman, 1996)に記載されている。ただしコンパイラが出力するコードの仕様はコンパイラ制作者の裁量に任されている。

標準ライブラリ

1998年に施行されたANSI/ISO C++ 規格は言語仕様とライブラリの2つのパートで構成される。ライブラリ規格の大半はStandard Template Library (STL) とC言語の標準ライブラリの改良版についての内容である。標準規格以外にも様々なライブラリが数多く存在し、リンカを使用することにより、C言語/FORTRAN/Pascal/BASICのような言語を用いて作成されたライブラリを利用できる。規格外のライブラリが利用できるかどうかはコンパイラに依存する。

C++標準ライブラリはC++向けに若干の最適化が施されたC言語標準ライブラリを含んでいる。C++標準ライブラリの大部分はSTLである。 コンテナ可変長配列リストなど)、コンテナを配列のように扱えるようにするイテレータ、検索やソートを行うアルゴリズムといった有用なツールが提供されている。さらにmapmultimapのような連想配列や、setmultisetのようなソート済みコンテナも提供され、これらは全てインターフェイスに互換性がある。テンプレートを用いることにより、あらゆるコンテナ(またはイテレータで定義したシーケンス)に適用できる汎用的なアルゴリズムを記述できる。C言語と同様にライブラリの機能には#include ディレクティブを使ってヘッダファイルを読み込むことによってアクセスする。C++には69本の標準ヘッダファイルがあるが、このうち19本については非推奨となっている。

STLは標準規格に採用される前は、ヒューレット・パッカードの(一時はシリコングラフィックスの)商用ライブラリだった。STLは標準規格の単なる一部分に過ぎず規格書にSTLという表記は見られないが、入出力ストリーム、国際化、デバッグ機能、およびC言語標準ライブラリ等の、STL以外の部分と区別するために、今でも多くの人がSTLという用語を使っている。

大半のC++コンパイラはSTLを含むC++標準ライブラリの実装を提供している。STLPortのようなコンパイラ非依存のSTLも存在する。様々な目的でC++標準ライブラリを独自に実装しているプロジェクトは他にもある。

C++の標準ライブラリは大きく次のように分けられる。多種多様な実行環境が存在することを考慮して、GUIに関するライブラリは標準に含まれていない。

外部ライブラリ

以下に、C++で広く使われていると思われる[独自研究?]ライブラリを挙げる。

Boost C++ライブラリ
様々なC++汎用ライブラリの集合。正規表現を扱うBoost.Regexや無名関数ラムダ計算)を簡潔に記述できるBoost Lambda Libraryなどがある。C++11やC++14などでも、Boostに存在するライブラリが標準ライブラリに採用されたり、標準ライブラリとして提案された項目がBoostで先行して実装されたりしている。これにより、実際に実装・使用することでの知見が得られ、標準ライブラリとして採用される際に活かされている。
Apache Xerces
C++での主要XMLパーサの一つ。Java版も存在する。
CppUnit
C++でのユニットテストフレームワーク。 クラス毎の動作確認に威力を発揮する。

特徴

C言語に、オブジェクト指向プログラミングをはじめとする様々なプログラミングパラダイムをサポートするための改良が加えられたものといえる。ただし、他のプログラミング言語と違い、旧来のCと同様に手続き型言語としても扱えるという特徴がある。また、C言語と比べて型チェックが厳しくなっており、型安全性が向上している。このことから、C++をbetter Cというふうに呼ぶことがある。すなわち、基本的にC言語に対して上位互換性がある。初期のC++はCへのトランスレータとして実装され、C++プログラムを一旦Cプログラムに変換してからコンパイルしていた。

ただし、C++という名称が定まった当初の時期から、C言語とC++との間には厳密な互換性はない[22][23]。当時、Cとの互換性について議論の末、「C++とANSI Cの間には不正当な非互換性はない」という合意が形成されることとなった。そのため、正当な非互換性を巡って多くの議論が発生した[24]。ただし、まだANSIによるC言語の標準規格も策定途中の時期である。

その後、先祖であるC言語のANSIによる標準規格制定時には、関数のプロトタイプ宣言やconst修飾など、C++の機能がC言語に取り入れられることにもなった。C99の出現により、//コメントなどのC++で使われていた便利な機能が加わってCとC++の互換性が高まる一方、別々に審議し、別の時期に発行していることと、開発対象が必ずしも同じでないために利害関係者が異なることによる違いもある[要出典]

C++はCにクラスのサポートを追加しただけでなく、さらに次のような多種多様な機能を持っており、言語仕様は大変複雑である。言語処理系すなわちコンパイラの実装も、Cなどと比べて難易度が非常に高い。

ここから、よりオブジェクト指向を強化し、「なんでもあり」ではない代わりにシンプルで分かりやすくスマートな設計を目指した新たな言語(JavaD言語など)が作られることとなった。

Hello, World!

C++はC言語およびそのプリプロセッサの構文をほぼ継承している。以下のサンプルはビャーネ・ストロヴストルップの書籍「The C++ Programming Language, 4th Edition」(ISBN 978-0321563842) の「2.2.1 Hello, World!」に記載されている標準C++ライブラリのストリーム機能を用いて標準出力に出力するHello worldプログラムである[25][※ 1]

#include <iostream>

int main()
{
    std::cout << "Hello, World!\n";
}

書籍でも明記されているが、main()関数で意図的に返り値を返さない手法が使用されている。

演算子と演算子のオーバーロード

C++には、四則演算、ビット演算、論理演算、比較演算、メンバーアクセスなどの30を超える演算子がある[26]。メンバーアクセス演算子 (..*) のような一部の例外はあるが、大半の演算子はユーザー定義によるオーバーロードが可能である。オーバーロード可能な演算子が豊富に揃えられているため、C++を一種のドメイン固有言語として利用できる。またオーバーロード可能な演算子はスマートポインタ関数オブジェクトのような組み込み型の機能を模倣したユーザー定義クラスの実装や、テンプレートメタプログラミングのような先進的な実装テクニックに欠かせないものとなっている。演算子をオーバーロードしても演算の優先順位は変化せず、また演算子のオペランドの数も変化しない。ただし指定したオペランドが無視される可能性はある。

テンプレート

C++には、ジェネリックプログラミングを実現する機能としてテンプレートが存在する。テンプレートにできる対象は、関数とクラスである。C++14以降では変数もテンプレートの対象となった。テンプレートはコード中の型および定数をパラメータ化できる。テンプレートのパラメータ(テンプレート仮引数)に、型、コンパイル時定数またはその他のテンプレート(テンプレート実引数)を与えることで、テンプレートはコンパイル時にインスタンス化(実体化・具現化などとも)される。コンパイラは関数やクラスをインスタンス化するために、テンプレート仮引数をテンプレート実引数に置き換える。テンプレートはジェネリックプログラミングテンプレートメタプログラミング、コード最適化などのために利用される強力なツールであるが、一定のコストを伴う。各テンプレートのインスタンスはテンプレート仮引数毎にテンプレートコードのコピーを生成するためコードサイズが肥大化する。これはコンパイル時に実型引数の情報を削除することで単一の型インスタンスを生成するランタイム型のジェネリクスを実装したJavaなどの言語とは対照的である。なお、C# (.NET Framework) は実行時コンパイラにより実型引数の情報を削除することなく複数の型インスタンスを生成する方式を採用しており、C++とJavaの中間的なアプローチとなっている。

テンプレートとプリプロセッサマクロはいずれもコンパイル時に処理される言語機能であり、静的な条件に基づいたコンパイルが行われるが、テンプレートは字句の置き換えに限定されない。テンプレートはC++の構文と型を解析し、厳密な型チェックに基づいた高度なプログラムの流れの制御ができる。マクロは条件コンパイルに利用できるが、新しい型の生成、再帰的定義、型の評価などは行えないため、コンパイル前のテキストの置き換えや追加・削除といった用途に限定される。つまりマクロは事前に定義されたシンボルに基づいてコンパイルの流れを制御できるものの、テンプレートとは異なり独立して新しいシンボルを生成することはできない。テンプレートは静的な多態(下記参照)とジェネリックプログラミングのためのツールである。

C++のテンプレートはコンパイル時におけるチューリング完全なメカニズムである。これはテンプレートメタプログラミングを用いて実行する前にコンピュータが計算可能なあらゆる処理を表現できることを意味している。

概略すれば、テンプレートはコードの記述に本来必要な型や定数を明確にすることなく抽象的な記述ができる、パラメータ化された関数またはクラスである。テンプレート仮引数に実引数を与えてインスタンス化した結果は、テンプレート仮引数に指定した型に特化した形で記述されたコードと全く等価になる。これによりテンプレートは、汎用的かつおおまかに記述された関数およびクラス(テンプレート)と、特定の型に特化した実装(インスタンス化されたテンプレート)の依存関係を解消し、パフォーマンスを犠牲にすることなく抽象化できる手段を提供する。

オブジェクト

C++はC言語オブジェクト指向プログラミングをサポートするための改良を加えたものといえる。C++のクラスには、オブジェクト指向言語で一般的な抽象化カプセル化継承多態の4つの機能がある。オブジェクトは実行時に生成されるクラスの実体である。クラスは実行時に生成される様々なオブジェクトのひな形と考えることができる。

なお、C++はSmalltalkなどに見られるメッセージ転送の概念によるオブジェクト指向を採用していない。

カプセル化

カプセル化とは、データ構造を保証し、演算子が意図したとおりに動作し、クラスの利用者が直感的に使い方を理解できるようにするためにデータを隠蔽することである。クラスや関数はC++の基礎的なカプセル化のメカニズムである。クラスのメンバはpublicprotectedprivateのいずれかとして宣言され明示的にカプセル化できる。publicなメンバはどの関数からでもアクセスできる。privateなメンバはクラスのメンバ関数から、またはクラスが明示的にアクセス権を与えたフレンド関数からアクセスできる。protectedなメンバはクラスのメンバおよびフレンド関数に加えてその派生クラスのメンバからもアクセスできる。

オブジェクト指向では原則としてクラスのメンバ変数にアクセスする全ての関数はクラスの中にカプセル化されなければならない。C++ではメンバ関数およびフレンド関数によりこれをサポートするが、強制はされない。プログラマはメンバ変数の一部または全体をpublicとして定義でき、型とは無関係な変数をpublicな要素として定義できる。このことからC++はオブジェクト指向だけでなく、モジュール化のような機能分割のパラダイムもサポートしているといえる。

一般的には、全てのデータprivateまたはprotectedにして、クラスのユーザに必要最小限の関数のみをpublicとして公開することがよい習慣であると考えられている。このようにしてデータの実装の詳細を隠蔽することにより、設計者はインターフェイスを変更することなく後日実装を根本から変更できる[27] [28]

継承

継承を使うと他のクラスの資産を流用できる。基底クラスからの継承はpublicprotectedprivateのいずれかとして宣言する。このアクセス指定子により、派生クラスや全く無関係なクラスが基底クラスのpublicおよびprotectedメンバにアクセスできるかどうかを決定できる。普通はpublic継承のみがいわゆる派生に対応する。残りの二つの継承方法はあまり利用されない。アクセス指定子を省略した場合、構造体public継承になるのに対し、クラスではprivate継承になる。基底クラスをvirtualとして宣言することもできる。これは仮想継承と呼ばれる。仮想継承は基底クラスのオブジェクトが一つだけ存在することを保証するものであり、多重継承の曖昧さの問題を避けることができる。

多重継承はC++の中でもしばしば問題になる機能である。多重継承では複数の基底クラスから一つのクラスを派生できる。これにより継承関係が複雑になる。例えばFlyingCatクラスはCatクラスとFlyingMammalクラスから派生できる。JavaC#では、基底クラスの数を一つに制限する一方で、複数のインターフェイスを実装でき、これにより制約はあるものの多重継承に近い機能を実現できる(実装の多重継承ではなく型の多重継承)。インターフェイスはクラスと異なり抽象メソッド(純粋仮想関数)を宣言できるのみであり、関数の実装やフィールド(メンバ変数)は定義できない。JavaとC#のインターフェイスは、C++の抽象基底クラスと呼ばれる純粋仮想関数宣言のみを持つクラスに相当する。JavaやC#の継承モデルを好むプログラマは、C++において実装の多重継承は使わず、実装の継承は単一継承に絞り、抽象基底クラスによる型の多重継承のみを使うポリシーを採用することもできる。

多態

多態 (ポリモーフィズム) は様々な場面で多用されている機能である。多態により、状況や文脈に応じてオブジェクトに異なる振る舞いをさせることができる。逆に言うと、オブジェクト自身が振る舞いを決定することができる。

C++は静的な多態動的な多態の両方をサポートする。コンパイル時に解決される静的な多態は柔軟性に劣るもののパフォーマンス面で有利である。一方、実行時に解決される動的な多態は柔軟性に優れているもののパフォーマンス面で不利である。

静的な多態

関数のオーバーロードは名称が同じ複数の関数を宣言できる機能である。ただし引数は異なっていなければならない。個々の関数は引数の数や型の順序で区別される。同名の関数はコードの文脈によってどの関数が呼ばれるのかが決まる。関数の戻り値の型で区別することはできない。

関数を宣言する際にプログラマはデフォルト引数を指定できる。関数を呼び出すときに引数を省略した場合はデフォルト引数が適用される。関数を呼び出すときに宣言よりも引数の数が少ない場合は、左から右の順で引数の型が比較され、後半部分にデフォルト引数が適用される。たいていの場合は一つの関数にデフォルト引数を指定するよりも、引数の数が異なる関数をオーバーロードする方が望ましい。

C++のテンプレートでは、より洗練された汎用的な多態を実現できる。特にCuriously Recurring Template Patternにより仮想関数のオーバーライドをシミュレートした静的な多態を実装できる。C++のテンプレートは型安全かつチューリング完全であるため、テンプレートメタプログラミングによりコンパイラに条件文を再帰的に解決させて実行コードを生成させることにも利用できる。

動的な多態

派生

基底クラスへのポインタおよび参照は、正確に型が一致するオブジェクトだけでなく、その派生クラスのオブジェクトを指すことができる(リスコフの置換原則)。これにより、複数の異なる派生型を、同一の基底型で統一的に扱うことが可能となる。また、基底型へのポインタの配列やコンテナは、複数の異なる派生型へのポインタを保持できる。派生オブジェクトから基底オブジェクトへの変換(アップキャスト)では、リスコフの置換原則により、明示的なキャストは必要ない。

dynamic_castは基底オブジェクトから派生オブジェクトへの変換(ダウンキャスト)を実行時に安全に行うための演算子である。この機能は実行時型情報 (RTTI) に依存している。あるオブジェクトが特定の派生型のオブジェクトであることがあらかじめ分かっている場合はstatic_cast演算子でキャストすることもできる。static_castは純粋にコンパイル時に解決されるため動作が速く、またRTTIを必要としない。また、static_castは従来のC言語形式のキャスト構文と違い継承階層のナビゲーションをサポートするため、多重継承した場合もメモリレイアウトを考慮したダウンキャストを実行することができる。ただし、static_castでは多重継承において継承関係を持たない基底型同士のキャスト(クロスキャスト)を実行することはできず、dynamic_castを用いる必要がある。とはいえ、ダウンキャストやクロスキャストが必要となる場合、通例そのプログラムの設計に問題があることが多く、本来は仮想関数のオーバーライドによる多態を用いるべきである。

仮想関数

クラスのメンバー関数をvirtualキーワードで修飾することにより、派生クラスでオーバーライド(再定義)することが可能な仮想関数 (virtual function) となる。仮想関数は「メソッド」と呼ばれることもある[29]。派生クラスにて、基底クラスの仮想関数と名前および引数の数や型の順序が同じ関数を定義することでオーバーライドする(C++11以降では、overrideキーワードにより修飾することでオーバーライドを明示することもできる)。基底クラスの仮想関数を派生クラスでオーバーライドした場合、実際に呼び出される関数はオブジェクトの型によって決定される。基底クラスのポインタのみが与えられた場合、コンパイラはオブジェクトの型をコンパイル時に特定できず正しい関数を呼び出せないため、実行時にこれを特定する。これをダイナミックディスパッチと呼ぶ。仮想関数により、オブジェクトに割り当てられた実際の型に従って、最上位の派生クラスで実装した関数が呼び出される。一般的なC++コンパイラは仮想関数テーブルを用いる。オブジェクトの型が判明している場合はスコープ解決演算子を利用して仮想関数テーブルを使わないようにバイパスすることもできるが、一般的には実行時に仮想関数の呼び出しを解決するのが普通である。

通常のメンバー関数に加え、オーバーロードした演算子やデストラクタも仮想関数にできる。原則的にはクラスが仮想関数を持つ場合はデストラクタも仮想関数にすべきである。コンストラクタやその延長線上にあるコピーコンストラクタはコンパイルされた時点でオブジェクトの型が確定しないため仮想関数にできない。しかし、派生オブジェクトへのポインタが基底オブジェクトへのポインタとして渡された場合に、そのオブジェクトのコピーを作らなければならない場合は問題が生じる。このような場合はclone()関数(またはそれに準じる物)を仮想関数として作成するのが一般的な解決方法である。clone()は派生クラスのコピーを生成して返す。

= 0をメンバー関数宣言の末尾セミコロンの直前に挿入することにより、メンバー関数を純粋仮想関数 (pure virtual function) にできる。純粋仮想関数を持つクラスは純粋仮想クラスと呼ばれ、このクラスからオブジェクトを生成することはできない。このような純粋仮想クラスは基底クラスとしてのみ利用できる。派生クラスは純粋仮称関数を継承するため、派生クラスのオブジェクトを生成したい場合は全ての純粋仮想関数をオーバーライドして実装しなければならない。純粋仮想関数を持つクラスのオブジェクトを生成しようと試みるようなプログラムは行儀が悪い。

テンプレート

型消去 (type erasure) と呼ばれる、テンプレートを活用して動的な(プログラム実行時の)多態性を実現する手法が存在する。この手法はC++の標準ライブラリでもstd::functionstd::shared_ptrの削除子で採用されている。いずれも、コンストラクタや代入演算子で(一定の条件を満たす)任意のオブジェクトを実引数として渡せるようにすることから多態性を実現している。

単一行コメント

C99の制定前、C言語とC++との分かりやすい差異として、// で始まり改行で終わる、単一行コメントの有無があった。

単一行コメントはもともと、C言語の祖先にあたるBCPLに含まれていた仕様である。現在のC++のコンパイラの多くがC言語のコンパイラとしても使えるようになっているのと同様に、C言語が生まれて間もない頃は、C言語に加えB言語やBCPLのコンパイルができるコンパイラが用いられていた。それらコンパイラは、C言語のソースであってもBCPLと同様に単一行コメントが使用できるよう独自の拡張がなされていたため、 BCPLの単一行コメントに慣れ親しんでいたプログラマ達は、C言語でも単一行コメントを使い続けた。その慣習がC++の誕生時まで生き残っていたため、C++では単一行コメントを「復活」させることになった。[独自研究?]

そのためもあって、C言語での仕様外の単一行コメントの使用は半ば常習と化し、[独自研究?]C99によって単一行コメントが正式に規格として組み入れられた。

C++ソースコードの処理とパーサ

LALR(1)のような旧式のパースアルゴリズムを用いてC++のパーサを記述することは比較的難しい[30]。その理由の一つはC++の文法がLALRではないことである。このため、コード分析ツールや、高度な修正を行うツール(リファクタリングツールなど)は非常に少ない。この問題を取り扱う方法としてLALR(1)でパースできるように改良されたC++の亜種(SPECS)を利用する方法がある。GLRパーサのようにより強力でシンプルなパーサもあるが処理が遅い。

パースはC++を処理するツールを作成する際の最も難しい問題ではない。このようなツールはコンパイラと同じように識別子の意味を理解しなければならない。従ってC++を処理する実用的なシステムはソースコードをパースするだけでなく、各識別子の定義を正確に適用し(つまりC++の複雑なスコープのルールを正確に取り扱い)、型を正しく特定できなければならない。

いずれにせよC++ソースコード処理ツールが実用的であるためには、GNU GCCVisual C++で使われているような、様々なC++の方言を取り扱えなければならず、適切な分析処理やソース変換やソース出力などが実装できなければならない。GLRのような先進的なパースアルゴリズムとシンボルテーブルを組み合わせてソースコードを変換する方法を利用すればあらゆるC++ツールを開発できる。

互換性

その言語文法の複雑さゆえ、C++規格に準拠したコンパイラを開発するのは一般的に難しい。20世紀末から何年にも渡りC++に部分的に準拠した様々なコンパイラが作られ、テンプレートの部分特殊化などの部分で実装にばらつきがあった。中でも、テンプレートの宣言と実装を分離できるようにするためのexportは問題のキーワードの一つだった。exportを定義したC++98規格がリリースされてから5年後の2003年前半にComeau C/C++が初めてexportを実装した。2004年にBorland C++ Builder Xexportを実装した。これらのコンパイラはいずれもEDGフロントエンドをベースにしていた。大半のコンパイラで実装されていないexportは多くのC++関連書籍(例えば"Beginning ANSI C++", Ivor Horton著)にサンプルが記されているが、exportが記載されていることによる問題は特に指摘されていない。GCCをはじめとするその他のコンパイラでは全くサポートしていない。Herb SutterはC++の標準規格からexportを削除することを推奨していたが[31]、C++98では最終的にこれを残す決定がなされた[32]。結局、C++11では実装の少なさ・困難さを理由に削除された。

コンパイラ開発者の裁量で決められる範囲を確保するため、C++標準化委員会は名前修飾例外処理などの実装に依存する機能の実装方法を決定しないことに決めた。この決定の問題は、コンパイラが異なるとオブジェクトファイルの互換性が保証されない点である。特定の機種やOSでコンパイラの互換性を持たせ、バイナリレベルでのコード再利用性を高めようとするABI[33]のような非標準の規格もあり、一部のコンパイラではこうした準規格を採用している。

2019年現在のメジャーなC++コンパイラ(gcc, Clang, Intel C++ Compiler, Microsoft Visual C++など)の最新版はC++11およびC++14規格にほぼ準拠しており、特にClangは2013年4月時点でC++11の全機能を実装完了した[34][35]。ただしマイナーアップデートとなるC++17を含めると、処理系間でのばらつきは依然として存在する。

C言語との互換性

C++は基本的にC言語の上位互換であるが、厳密には異なる[36]。C言語で記述された大半のプログラムはC++でコンパイルできるように簡単に修正できるが、C言語では正当でもC++では不正になる部分や、C++とは動作が異なる部分が若干存在する。

例えば、C言語では汎用ポインタvoid*は他の型へのポインタに暗黙的に変換できるが、C++ではキャスト演算子によって変換を明示する必要がある。またC++ではnewclassといった数多くの新しいキーワードが追加されたが、移植の際に元のC言語のプログラムでそれらが識別子(例えば変数名)として使われていると、問題になる。

C言語の標準規格であるC99やその後継C11ではこうした非互換性の一部が解決されており、//形式のコメントや宣言とコードの混在といったC++の機能がC言語でサポートされている。その一方でC99では、可変長配列、複素数型の組み込み変数、指示初期化子、複合リテラルといった、C++でサポートしていない数多くの新機能が追加された[37]。C99で追加された新機能の一部はC++11に反映され、C++14に対してもC99やC11との互換性を向上される提案が行われた。また、可変長配列や複素数型などのC99に追加された機能の一部はC11でオプションとなった[38][39]

C++で書かれた関数をC言語で書かれたプログラムから呼び出す、あるいはその逆を行なう場合など、C言語のコードとC++のコードを混在させるためにはCリンケージを利用する必要があり、関数をextern "C"で個別に修飾するか、extern "C" { ... }のブロックの中で宣言しなければならない。また、関数引数や戻り値などのインターフェイスはC言語互換形式に合わせる必要がある。Cリンケージを利用した関数については、C++名前修飾がされず、名前修飾に依存している関数オーバーロード機能は利用できない。

C/C++の相互運用性が確保されていることで、慣れ親しんだC言語標準ライブラリ関数の大半をC++でもそのまま利用し続けることができるということはC++の大きなメリットのひとつである。

主なC++処理系

注釈

  1. ^ Open issues for The C++ Programming Language (3rd Edition) - このコードはストロヴストルップ自身による訂正文からの引用(633ページ)。std::endl'\n'に改めている。またmain関数がデフォルトで0を返す件についてはwww.research.att.com及びwww.delorie.com/djgpp/ を参照されたし。このデフォルト仕様はmain関数のみであり他の関数にはない。

出典

  1. ^ a b 『プログラミング言語C++』第4版、pp.12-13。
  2. ^ 『C++の設計と進化』、pp.152-153。
  3. ^ 『プログラミング言語C++』第4版、p.11。
  4. ^ Bjarne Stroustrup's FAQ - When was C++ invented?” (English). 2006年5月30日閲覧。
  5. ^ Bjarne Stroustrup; Margaret A. Ellis (1990). The Annotated C++ Reference Manual. Addison-Wesley Professional. ISBN 978-0201514599 
  6. ^ Bjarne Stroustrup; Margaret A. Ellis『The Annotated C++ Reference Manual』足立高徳、小山裕司、シイエム・シイ、2001年。 ISBN 978-4901280396 
  7. ^ ISO/IEC 14882:1998
  8. ^ ISO/IEC 14882:2003
  9. ^ ISO/IEC TR 19768:2007
  10. ^ ISO/IEC 14882:2011
  11. ^ ISO/IEC 14882:2014
  12. ^ https://www.iso.org/standard/68564.html
  13. ^ https://www.iso.org/standard/79358.html
  14. ^ We have C++14! : Standard C++
  15. ^ Current Status”. isocpp.org. 2020年9月7日閲覧。
  16. ^ C++20 Approved -- Herb Sutter”. isocpp.org. 2020年9月8日閲覧。
  17. ^ ISO/IEC 14882:2020”. 2021年3月16日閲覧。
  18. ^ Working Draft, Standard for Programming Language C ++” (2020年12月15日). 2021年3月16日閲覧。
  19. ^ Sutter, Herb (2020年7月29日). “Business Plan and Convener's Report: ISO/IEC JTC1/SC22/WG21 (C++)”. 2021年3月16日閲覧。
  20. ^ Upcoming Meetings, Past Meetings”. 2021年3月16日閲覧。
  21. ^ Ranns, Nina (2020年11月19日). “WG21 2020-11 Virtual Meeting: Minutes of Meeting”. 2021年3月16日閲覧。
  22. ^ Koenig, Andrew; Bjarne Stroustrup (1989年5月11日). “C++: as close as possible to C – but no closer” (PDF) (英語). 2016年11月19日閲覧。
  23. ^ Stroustrup, Bjarne. “Stroustrup: FAQ Is C a subset of C++?” (英語). 2016年11月19日閲覧。
  24. ^ 『C++の設計と進化』、pp.124-125。
  25. ^ Bjarne Stroustrup (2000年). The C++ Programming Language (Special Edition ed.). Addison-Wesley. pp. 46. ISBN 0-201-70073-5 
  26. ^ 式 - cppreference.com
  27. ^ Sutter, Herb; Alexandrescu, Andrei (2004). C++ Coding Standards: 101 Rules, Guidelines, and Best Practices. Addison-Wesley 
  28. ^ Henricson, Mats; Nyquist, Erik (1997). Industrial Strength C++. Prentice Hall. ISBN 0-13-120965-5 
  29. ^ Stroustrup, Bjarne (2000). The C++ Programming Language (Special Edition ed.). Addison-Wesley. p. 310. ISBN 0-201-70073-5. "A virtual member function is sometimes called a method." 
  30. ^ Andrew Birkett. “Parsing C++ at nobugs.org”. Nobugs.org. 2009年7月3日閲覧。
  31. ^ Why We Can’t Afford Export (PDF, 266 KB)
  32. ^ Minutes of J16 Meeting No. 36/WG21 Meeting No. 31, April 7-11, 2003” (2003年4月25日). 2006年9月4日閲覧。
  33. ^ C++ ABI”. 2006年5月30日閲覧。
  34. ^ 後藤大地 (2013年4月22日). “LLVM Clang、C++11にフル対応”. マイナビニュース. 2013年9月7日閲覧。
  35. ^ GCC 4.8 Release Series — Changes, New Features, and Fixes - GNU Project”. gcc.gnu.org. 2022年11月7日閲覧。
  36. ^ Bjarne Stroustrup's FAQ - Is C a subset of C++?”. 2008年1月18日閲覧。
  37. ^ C9X -- The New C Standard”. 2008年12月27日閲覧。
  38. ^ 可変長配列: §6.7.6.2
  39. ^ C言語の最新事情を知る: C99の仕様 - Build Insider

参考文献

関連項目

外部リンク


C言語

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/06/05 15:05 UTC 版)

C言語
C言語のロゴ
パラダイム 命令型プログラミング構造化プログラミング手続き型プログラミング 
登場時期 1972年 (53年前) (1972).
開発者 ベル研究所デニス・リッチー米国国家規格協会国際標準化機構ケン・トンプソン 
最新リリース ISO/IEC 9899:2024/ 2024年10月31日 (7か月前) (2024-10-31)
型付け 弱い静的型付け
主な処理系 GCC, Clang, Visual C++, Intel C++ Compiler
影響を受けた言語 ALGOL 68、B言語アセンブリ言語FORTRANPL/ICPLBCPL、ALGOL 60、ALGOL 
影響を与えた言語 awkcshC++Objective-CRustD言語JavaJavaScriptLimbo
プラットフォーム Microsoft WindowsUnix系 
ウェブサイト
拡張子 .c, .h
テンプレートを表示

C言語(シーげんご、: C programming language)は、1972年AT&Tベル研究所デニス・リッチーが主体となって開発した汎用プログラミング言語である。英語圏では「C language」または単に「C」と呼ばれることが多い。日本でも文書や文脈によっては同様に「C」と呼ぶことがある。制御構文などに高水準言語の特徴を持ちながら、ハードウェア寄りの記述も可能な低水準言語の特徴も併せ持つ。基幹系システムや、動作環境の資源制約が厳しい、あるいは実行速度性能が要求されるソフトウェアの開発に用いられることが多い。後発のC++JavaC#など、「C系」と呼ばれる派生言語の始祖でもある[注釈 1]

ANSIISO、またJISにより言語仕様が標準規格化されている。

特徴

Cには他のプログラミング言語と比較して、特筆すべきいくつかの特徴がある。

利点

欠点

  • 開発時期が古いことから、言語構文(文法)に機械語の影響が強く、仕様自体は単純ではあるが明快ではなく難解である。この欠点を改良するためのちに開発された後発言語に比較し、プログラマが記述しなければならないことが多く、低水準言語のように面倒で習得しにくい側面を持つ。
  • Cは、移植の容易性、自由度、実行速度、コンパイル速度などを追求した。代わりにコンパイル後のコードの安全性を犠牲にしている。また、詳細を規格で規定せず処理系に委ねている部分が多く、Cで書かれたソフトウェアでは処理系依存のコードが氾濫する原因となった。セキュリティ上の脆弱性や潜在的バグによる想定外の動作、コンパイラによる最適化の難しさ[注釈 2]といった問題を抱えており、最適化するとコンパイル速度が遅くなるなどの問題が生じることがある。

上記のように、利点でもあり、同時に欠点にもなる特徴を備えている。

もともとUNIXおよびCコンパイラの移植性を高めるために開発されてきた経緯から、オペレーティングシステム(OS)のカーネルおよびコンパイラ向けの低水準な記述ができるなど、ハードウェアをある程度抽象化しつつも、必要に応じて低水準言語と同じことを実現できるようなコンピュータ寄りの言語仕様になっている。そのため、低水準な記述ができる高水準言語と言われたり、高水準言語の顔をした低水準言語(高級アセンブラ[2]、汎用アセンブラ[3])と言われたりすることがある。

Cはアマチュアからプロ技術者まで、プログラマ人口が多く、プログラマのコミュニティが充実している。使用者の多さから、正負の両面含め、Cはプログラミング文化に大きな影響を及ぼしている。また、多目的性と、対応機器の多彩さのため、「コンピュータを使ってやること」は大抵、Cで対応可能である。ただし、Cで効率的かつ安全に記述できるかどうかはまた別の話である。スクリプト言語やコマンドラインシェルを使えば手軽に実現にできるような処理まで、わざわざCで記述する必要はない。また、GUIアプリケーションフレームワークは、Cからは利用できず、統合開発環境と連携する新しいプログラミングツールやプログラミングパラダイムに対応した後発言語でなければ利用できないものもある。

MISRA CCERT Cというコーディング標準(コーディング規約)を定義して、危険な機能の使用や記述を禁止するという制限を設けることでCを安全に利用するためのガイドラインが運用されている分野もある。特にプログラミングミスが人命に直結する自動車分野などでCを利用するには、このような制約が重要である。

機能と自由度

  • 文の区切りを終端記号 セミコロン;」で表し、改行文字にも空白にもトークンの区切りとしての意味しか持たせない「フリーフォーマット」という形式を採用している。中括弧{ }によるブロック構造およびスコープをサポートする。
  • ALGOLの思想を受け継いで構造化プログラミングに対応している。手順を入れ子構造で示して見通しの良い記述をすることができる。原理的に無条件分岐(gotoを使用する必要はなく、MISRA Cでは当初goto文を禁止していた。
  • モジュール化ファイルを単位として可能。モジュール内だけで有効な名前を使うことができるスコープを持っている。
  • プログラムを戻り値つきのサブルーチンに分離できる。C言語ではこれを関数と呼び、関数内のプログラムコードでは、独立したスコープを持つ変数(ローカル変数)が使用できる。これにより、データの流れがブロックごとに完結するのでデバッグが容易になり、また関数の再帰呼び出しも可能となる。また、多人数での共同開発の際にも変数名の衝突が回避しやすくなる。なお、C言語ではUNIXのようなOSを前提としたホスト環境と、割り込み制御のようなOSを前提としないフリースタンディング環境とがある。ホスト環境では、プログラム開始直後に実行するプログラム要素を main という名前の関数として定義する[注釈 3]。プログラム中で再帰的にmain関数を呼ぶことも可能(C++では不可能[4][5])。フリースタンディング環境では、エントリーポイントと呼ばれるアドレスに置かれたコードをプログラムの開始点とするが、それがmain関数である必要はない。なお再帰呼び出しそのものは、スタックオーバーフローの原因となるため、MISRA Cでは禁止している。
  • システム記述言語として開発されたため、高級言語であるがアセンブラ的な低水準の操作ができる。ポインタ演算ビットごとの論理演算シフト演算などの機能を持ち、ハードウェアに密着した処理を効率よく記述できる。これはオペレーティングシステムやデバイスドライバーなどを記述する上では便利であるが、注意深く利用しないと発見しにくいバグの原因となる。ライブラリ関数は、C言語規格が規定している関数と、OSが規定している関数との間の整合性、棲み分けなどが流動的である。MISRA Cのようないくつかの制約では、C言語規格が規定している関数の妥当性について指摘し、いくつかの関数を利用しないように規定している。
  • ソースコードの記述に使う文字集合はANSI C (C89) およびISO/IEC 9899:1990 (C90) ではASCIIを標準としている。他のISO 646でも書けるように、3文字利用したトライグラフと呼ばれる表記法も存在する。その後、ISO/IEC 9899:1995 AMD (C95) などではマルチバイト文字セット対応の拡張を規定している。さらに、その後トライグラフは複数のコードを利用したシステムでしか利用がない[要説明]ため、より分かり易い2文字によるダイグラフを規定している。
  • 組み込みの整数型および浮動小数点数型のほか、構造体共用体、列挙体(列挙型)によるユーザー定義のデータ型や列挙定数をサポートする。構造体および共用体はビットフィールドをサポートする。

アセンブラとのインタフェース

  • 多くの処理系がインラインアセンブラを搭載しているほか、アセンブラで出力したオブジェクトとのリンクが容易になっている。これにより速度が要求される部分だけをアセンブリ言語で記述するということが容易に行えることが多い。アセンブラとのインタフェースは#pragma asmなどを用いて局所化を図る努力はあるが、コンパイラごとに定義があり、CPUが同一であっても移植性が低い場合がある。

コンパイラ仕様

  • コンパイラの処理が1パスで済む仕様になっている。歴史的な経緯から、変数の宣言において型指定がない場合はint型とみなし、関数の戻り値の型指定がない場合はint型とみなす。ANSI C (C89) ではコンパイル時型検査の強化のために関数プロトタイプの機能が導入されたが、関数の宣言がない場合の戻り値int型とみなし、引数は未知(任意)とみなす。しかし、このような暗黙の型指定は型安全性を損ない未定義動作を引き起こす危険性があるため、ISO/IEC C:1999 (C99) 以降では暗黙の型指定に関する仕様が標準規格の文面から削除された。いずれも使用(参照)するより前に適切に宣言する必要がある。ClangやGCCといったC99準拠のコンパイラは、このような暗黙の型指定について、C99モードであってもC89互換の動作を残してはいるものの、非標準の動作であるため警告を出すようになっている。なお、関数宣言において()のように引数を省略すると、引数を未知とする仕様はC99でも残されている。後継言語では完全なプロトタイプ宣言を必須とするか、あるいはプロトタイプ宣言自体を不要としているが、記述によっては先読みが必要になりうる。
  • マクロ記述やコンパイル条件の指定などができる前処理指令が標準化されている。前処理指令の解釈をするプリプロセッサ (preprocessor) を持っている。プリプロセッサは、その名の通りコンパイル処理の前に自動的に実行される。コンパイラの機能として、プリプロセッサを通しただけの段階のソースコードを出力可能になっているものがある。前処理の結果を検査することで、設計者の意図と前処理の結果のずれがないか確認できる。

処理系の簡素化

処理系の簡素化と効率のために、以下のように安全性を犠牲にした仕様が多い。なお、ホスト環境やプログラムの内容によっては、以下に対して脆弱性対策を施したとしても実行速度の低下が無視できる程度であることも多く、言語仕様側の欠点とみなされることも少なくない。

配列の参照時に添字の値が範囲内にあるかを検査しない
これを要因とする代表的なバグが、固定長のバッファ領域をはみだしてデータの書き込みが行われてしまう「バッファオーバーフロー」(バッファオーバーラン)である。範囲外のアクセスは、書き込みだけでなく読み取りの場合も未定義動作を引き起こす。標準ライブラリにはバッファオーバーフローや範囲外アクセスを考慮していない関数があり、かつ多用されがちなため、しばしば脆弱性の原因となる。また、Cではプログラムにより明示的に制御(動的メモリ確保)することで可変長配列の実現を可能にしているが、確保した領域の範囲外にアクセスしても自動的な伸長は行なわれない。
後継言語では、標準ライブラリまたは組み込み型により可変長配列をサポートしていたり、範囲外アクセス時には例外(実行時エラー)を送出するなどして安全性を優先していたりすることが多い。
文字列を格納するための特別な型が存在しない
文字列にはchar型の配列を利用する。言語仕様上に特別な扱いはないが、ヌル文字'\0')を終端とする文字列表現を使い、その操作をする標準ライブラリ関数がある。これは実質的にメモリ領域へのポインタアクセスそのものであり、確保されている領域の長さよりも長い文字列を書き込めてしまうために、バッファオーバーランの元凶の1つとなっている。
後継言語では文字列処理を特に強化している場合が多く、標準ライブラリあるいは言語仕様による組み込みの文字列型を提供している。
自動変数(auto variable)の自動的な初期化をしない
自動変数(静的でないローカル変数)は変数の中でも最も頻繁に用いられる。初期化されていない変数を参照した場合にはその値は不定であるが、不定な値へのアクセスは未定義動作であるので、コンパイラ最適化の過程で想定しない形に改変することもある[6]。変数宣言・初期化の仕様による制限から、変数宣言の時点では初期化をせずに後で代入等により値を入れてつかうことが普通なので、誤って不定の値の変数を読み出すバグを作り込みやすい。なお自動変数の自動とは変数の領域の確保と解放が自動であるという意味であり、自動的に初期化されるという意味ではない。
後継言語では、明示的な初期化が記述されていない変数は、不定値ではなくその変数の型の既定値(ゼロあるいはゼロ相当の値)で初期化される仕様になっていることが多い。

その他

  • ソースコード上の文字の大文字・小文字を区別する。
  • 入出力動的メモリ確保を含めほとんどの機能が、C言語自身で書かれたライブラリによって提供される。このことは、C言語の機種や環境依存性が低く、それらに依存する箇所をライブラリへ分離することにより移植性(ポータビリティ)が高いことを意味する[要出典]。さまざまな機種があるUNIXの世界でC言語が普及した理由のひとつである。
    • 例として、POSIX環境での動的メモリ確保はmallocおよびその類似関数にて提供される。一方、カーネルではメモリ確保の際にスレッドがブロックされるとカーネル内のデータが他のスレッドにより変更され、予期せぬ動作を起こす恐れがあることや、メモリ内容の初期化が必要かどうかによって割当先のページを選択することによりシステムの効率が上がることから、多くの場合POSIXとは異なるAPIを使用している。Linuxカーネルの場合、前者はフラグGFP_KERNELGFP_ATOMICの使い分け、後者は関数kmalloc(割り当てたメモリの内容は不定)とkzalloc(割り当てたメモリの内容はゼロクリア済)の使い分けにより実装している[7]
  • プログラムの実行に必要とするハードウェア資源が、アセンブラよりは多いが他の高級言語より少なくてすむため、現在さまざまな電化製品などの組み込みシステムでも使用されている。
  • 組み込み向けの場合は、プログラミング言語として、アセンブラ以外ではCとC++しか用意されていないことがある。その場合、他のプログラミング言語は、CやC++で書かれた処理系が存在すればコンパイルすることにより利用可能となることもあるが、メモリ制約などで動作しないことがある。
  • ANSI/ISOにより規格が標準化された後は言語仕様の変化が小さく安定していること、C言語のプログラマ人口やコード資産が多いこと、C++Objective-CからC言語関数を直接利用できること、また必要に応じて他のプログラミング言語からC言語関数を呼び出すためのバインディングを記述することが容易であることなどから、APIの外部仕様としてC言語の関数インターフェイスが選ばれることが多い。例えばOpenGLOpenCLのようなオープン規格は第一級言語としてC言語を採用している。

コード例

Hello worldプログラム

C言語のHello worldプログラムは、ホスト環境を前提とするか、フリースタンディング環境を前提とするかで、方向性が異なる。ホスト環境を前提とする場合には、標準入出力の利用により、動作をすぐに確かめることができる。以下では、標準Cライブラリヘッダstdio.hにて宣言されている、printf関数を利用したものを例示する。

#include <stdio.h>

int main(void)
{
    printf("Hello, world!\n");
    return 0;
}

上記サンプルソース中の「\n」は、エスケープ文字\によるエスケープシーケンスのひとつであり、改行(ラインフィード)を表す。

main関数は標準的なプログラムエントリーポイントであり、プログラムを開始すると、ランタイムライブラリによるスタートアップ処理が実行された後にこのmain関数が呼ばれる。引数のないバージョン(void)と、コマンドライン引数をポインタ配列として受け取るバージョン(int argc, char* argv[])どちらを使ってもよい[8]

なお、printf関数は書式文字列とそれに対応する可変個引数を受け取り、書式化された文字列として表示できる高機能な標準出力関数であるが、序盤から例示に使用している入門書もある。

return 0;main関数の戻り値としてint型の値0を返している。C99以降では、main関数の戻り値のデータ型がintと互換性があるときは暗黙的に0を返す[8]。従って、C99以降ではreturn 0;を省略しても同じ結果になる。

main関数とprintf関数は、いずれも入門者や初学者にとっては最初の関門となる難解な関数であり、C言語によるプログラミングのハードルを高くしている一因でもある[9][10]JavaC#のような後発言語では、文字列の扱いや、可変個引数の扱いがより簡潔で安全になっている。Pythonのようなインタプリタや対話環境上で動作することを前提とした言語では、main関数を定義する必要はない。

主な制御構造

主な標準ライブラリ関数

歴史

誕生

C言語は、AT&Tベル研究所のケン・トンプソンが開発したB言語の改良として誕生した(#外部リンクの「The Development of the C Language」参照)。

1972年、トンプソンとUNIXの開発を行っていたデニス・リッチーはB言語を改良し、実行可能な機械語を直接生成するC言語のコンパイラを開発した[11]。後に、UNIXは大部分をC言語によって書き換えられ、C言語のコンパイラ自体も移植性の高い実装のPortable C Compilerに置き換わったこともあり、UNIX上のプログラムはその後にC言語を広く利用するようになった。

ちなみに、「UNIXを開発するためにC言語が作り出された」と言われることがあるが、「The Development of the C Language」によると、これは正しくなく、経緯は以下の通りである。C言語は、当初はあくまでもOS上で動くユーティリティを作成する目的で作り出されたものであり、OSのカーネルを記述するために使われるようになるのは後の展開である。

  • UNIXの開発当初、Multicsプロジェクトが目指していた高級言語によるOSの開発という目標は見送られた。
  • アセンブリ言語でUNIXが作成されると、OS上で動くユーティリティを作成するためのプログラミング言語が必要とされた。
  • ケン・トンプソンは、当初Fortranコンパイラを作ろうとしたが、途中で放棄し、新しい言語であるB言語を作成した。
  • B言語はインタプリタ言語であったため動作が遅く、B言語でユーティリティを作ることはあまりなかった。
開発者達は、コンパイラなどのユーティリティを「システムプログラム」と呼んでいたが、それらの作成に使われる「システムプログラミング言語」は、OSのカーネルを作成するための言語という意味ではない[12]
  • B言語の欠点を解消するため、1971年に改良作業を開始した。
  • 1972年にC言語のコンパイラができあがり、UNIXバージョン2において、いくつかのユーティリティを作成するために使用された。

UNIX環境とC言語

アセンブリ言語との親和性が高いために、ハードウェアに密着したコーディングがやりやすかったこと、言語仕様が小さいためコンパイラの開発が楽だったこと、小さな資源で動く実行プログラムを作りやすかったこと、UNIX環境での実績があり、後述のK&Rといった解説文書が存在していたことなど、さまざまな要因からC言語は業務開発や情報処理研究での利用者を増やしていった。特にメーカー間でオペレーティングシステムやCPUなどのアーキテクチャが違うUNIX環境では再移植の必要性がしばしば生じて、プログラムをC言語で書いてソースレベル互換[13]を確保することが標準となった。

C言語誕生時の環境と他言語との比較

C言語の開発当初に使われた入力端末はASR-37英語版であったことが知られている[12]。 ASR-37は1967年制定の旧ASCII ISO R646-7bitにもとづいており、「{」および「}」の入力を行うことができたが、当時は一般的に使われていた入力端末ではなかった。 当時PDP-11の入力端末として広く使われていたのはASR-33であるが、これは1963年制定の旧ASCIIであるASA X3.4に準拠しており、「{」や「}」の入力を行うことはできなかった[14]

このことは、ブロック構造に「{」や「}」を用いるC言語(さらに元をたどればB言語)は、当時の一般的な環境では使用不可能であったことを示している。 これは、C言語はその誕生当初にあっては一般に広く使われることを想定しておらず、ベル研究所内部で使われることを一義的に考えた言語であったという側面の表れである。

これに対し、PascalBASIC等の当初から広く使われることを想定した言語では、ブロック構造に記号を用いずにbeginendをトークンとして用いることや、コメント行を表す際に開始トークンとしてREMという文字列を用いることなど、記号入力に制約がある多くの入力端末に対応できるように配慮されていた。この頃の他の言語やOSで大文字と小文字の区別をしないものが多いのも、当時は大文字しか入力できない環境も少なくなかったことの表れである。

このような事情のため、C言語が普及するのは、ASCII対応端末が一般化した1980年代に入ってからである。

現在、ブロック構造の書式等で、{...}形式のC言語と、begin...end等を使用する他の言語との比較において優劣を論じられることがあるが、開発時の環境等をふまえずに現時点での利便性のみで論じるのは適切ではない場合があることに留意が必要である。

PCとC言語

1980年代に普及し始めたパーソナルコンピュータ (PC) は当初、8ビットCPUでROM-BASICを搭載していたものも多く、BASICが普及していたが、1980年代後半以降、16ビットCPUを採用しメモリも増えた(ROM-BASIC非搭載の)PCが主流になりだすと、Turbo CやQuick Cといった2万円程度の比較的安価なコンパイラが存在したこともあり、ユーザーが急増した。8ビットや8086系のPCへの移植は、ポインタなどに制限や拡張を加えることで解決していた。

現在のC言語

1990年代中盤には、最初に学ぶプログラミング言語としても主流となった。また、同時期にはゲーム専用機(ゲームコンソール)の性能向上とプログラムの大規模化、マルチプラットフォーム展開を受け、メインの開発言語がアセンブリ言語からC言語に移行した。

1990年代後半 - 2000年代以降は、PCのさらなる性能向上と普及、GUI環境やオブジェクト指向の普及、インターネットおよびウェブブラウザの普及、スマートフォンの普及に伴い、より高水準で開発効率の高い言語やフレームワークを求める開発者が増えたことにより、C++Visual BasicJavaC#Objective-CPHPJavaScriptなどが台頭してきた。広く利用されるプログラミング言語の数は増加傾向にあり、相対的にC言語が使われる場面は減りつつある。特にアプリケーションソフトウェアなどの上位層の開発には、C言語よりも記述性に優れるC++、Java、C#などC言語派生の後発言語が利用されることが多くなっている。資源制約の厳しかったゲーム開発においても、ハードウェアの性能向上やミドルウェアの普及により、C++やC#などが使われる場面が増えている。速度性能や省メモリが特に重視されるシステムプログラミングに関しても、伝統的にC/C++の独壇場だったが、新規コードではより安全性の高いRustを導入する事例が現れている[15][16]

しかし、C言語は比較的移植性に優れた言語であり、個人開発/業務用開発/学術研究開発やプロプライエタリ/オープンソースを問わず、オペレーティングシステムやデバイスドライバーなどの下位層、クロスプラットフォームAPIの外部仕様、C++やJavaなどの高水準言語の処理系および実行環境の実装が困難な小規模の組み込みシステムなどを中心に、2021年現在でも幅広く利用されている。

プログラミング入門者にとっては、Python、JavaScript、SwiftKotlinなどのように、インタラクティブな対話環境(REPLインタプリタ)が利用でき、抽象化が進んでおり、煩雑なメモリ管理が不要で、危険な機能を制限した高水準言語のほうが学習・習得しやすいが、コンピュータの動作原理やハードウェア仕様を理解するには、Cのような原始的な言語を用いたほうがかえって分かりやすいケースもある。

規格

K&R

米国国家規格協会(ANSI)による標準化が行われるまで、1978年出版のデニス・リッチーブライアン・カーニハンの共著『The C Programming Language』が実質的なC言語の標準として参照されてきた。この書籍は、著者らのイニシャルを取って「K&R」とも呼ばれている。C言語は発展可能な言語で、K&Rの記述も発展の可能性のある部分は厳密な記述をしておらず、曖昧な部分が存在していた。そのためC言語が普及するとともに、互換性のない処理系が数多く誕生した。

C89/C90

そこで、ISO/IEC JTC1とANSIは協同でC言語の規格の標準化を進め、1989年12月にANSIがANSI X3.159-1989, American National Standard for Information Systems -Programming Language-Cを、1990年12月にISOがINTERNATIONAL STANDARD ISO/IEC 9899 : 1990(E) Programming Languages-Cを発行した。ISO/IEC規格のほうが章立てを追加しており、その後ANSIもISO/IEC規格にならって章立てを追加した。それぞれC89 (ANSI C89) およびISO/IEC C90という通称で呼ぶことがある。

日本では、これを翻訳したものを『JIS X 3010-1993 プログラム言語C』として、1993年10月に制定した。

最大の特徴は、C++と同様の関数プロトタイプ[注釈 4]を導入して引数の型チェックを強化したことと、voidenumなどの新しい型を導入したことである。一方、「処理系に依存するものとする」に留めた部分も幾つかある(int型のビット幅、char型の符号、ビットフィールドエンディアン、シフト演算の挙動、構造体などへのパディング等)。

規格では以下の3種類の自由を認めている部分がいくつかある[17]

  • 規格で定義しないことを決めている「未定義」 (undefined)
  • 規格で選択肢を定義したもののどれにするかを決めておらず、処理系が選択する必要があるが、文書化の必要はない「未規定」 (unspecified)
  • 処理系ごとに決めて文書化する必要のある「処理系定義」 (implementation-defined)

これにより、プラットフォームやプロセッサアーキテクチャとの相性による有利不利が生じないような仕様になっている。

8ビット/16ビット/32ビットなど、レジスタ幅(ワードサイズ)の異なるプロセッサ (CPU) に対応・最適化できるようにするため、組み込み型の情報量(大きさ)や内部表現にも処理系の自由を認めている。型のバイト数はsizeof演算子で取得し、各型の最小値・最大値はlimits.hで定義されているマクロ定数で参照することとしている。ただし、1バイトあたりのビット数は規定されていない。sizeof(char) == 1すなわちchar型が1バイトであることは常に保証されるが、8ビット(オクテット)とは限らない。実際のビット数はCHAR_BITマクロ定数で取得できる。とはいえ、現実の多くの処理系ではchar型は8ビットである。また、その他の整数型については、sizeof(int) >= 2sizeof(int) >= sizeof(short)sizeof(long) >= sizeof(int)、という大小関係が定められているだけである(符号無し型も同様)。多くの処理系ではshort型のサイズは2バイト(16ビット)であるが、intlongのサイズはCPUのレジスタ幅などによって決められることが多い。int型、short型、long型で符号を明示しない場合はsignedを付けた符号付き型として扱われる。しかしchar型に関しては、signed(符号付き)にするか、それともunsigned(符号無し)にするかは処理系依存である。char型、signed char型、unsigned char型はそれぞれ異なる型として扱われる。

規格上には、BCPLやC++形式の1行コメント(//…)は無いが、オプションで対応した処理系も多く、gccやClangはGNU拡張-std=gnu89でサポートしている。

GNU Cコンパイラ や Clang では、-std=c89(または-ansiもしくは-std=c90)をつけることにより、GNU拡張を使わないC89規格に準拠したコンパイルを行うことができる[注釈 5]。加えて、-pedanticをつければ診断結果が出る。商用のコンパイラではWatcom Cコンパイラが規格適合の比率が高いと言われていた。現在Open Watcomとして公開している。

C89には、下記の追加の訂正と追加を行った。

  • ISO/IEC 9899/COR1:1994
  • ISO/IEC 9899/AMD1:1995 - 英語圏での利用を想定して制定したC89に対して、国際化のためワイド文字版ライブラリを追加したAmendment1が1995年に発行された。
  • ISO/IEC 9899/COR2:1996

C99

1999年12月1日に、ISO/IEC JTC1 SC22 WG14 で規格の改訂を行い、C++の機能のいくつかを取り込むことを含め機能を拡張し、ISO/IEC 9899:1999(E) Programming Language--C (Second Edition) を制定した。この版のC言語の規格を、通称としてC99と呼ぶ。

日本では、日本産業規格 JIS X 3010:2003「プログラム言語C」がある。

主な追加機能:

  • 変数宣言がブロックの先頭でなくても良くなった。
  • ブール代数を扱うための_Bool型が予約語に追加され、標準ライブラリとしてstdbool.hを追加した。
  • 複素数を扱うための_Complex型や_Imaginary型を予約語に追加し、標準ライブラリとして、complex.hを追加した。
  • 少なくとも64ビットの整数値を保持できる long long int型の追加。
  • オプションとして、固定幅かつ内部表現の規定された整数型の標準化(stdint.h)。
  • //による1行コメント。
  • インライン関数(inlineキーワード)。
  • 可変長配列alloca関数の代替)[18]

C99は下記の訂正がある。

  • ISO/IEC 9899:1999 Cor. 1:2001(E)
  • ISO/IEC 9899:1999 Cor. 2:2004(E)
  • ISO/IEC 9899:1999 Cor. 3:2007(E)

C11

2011年12月8日ISO/IEC 9899:2011(通称・C11)として改訂された。

C11はUnicode文字列(UTF-32UTF-16UTF-8の各符号化方式)に標準で対応している。そのほか、type-generic式、C++と同様の無名構造体・無名共用体、排他的アクセスによるファイルオープン方法、quick_exitなどのいくつかの標準関数などを追加した。

また、_Noreturn関数指示子を追加した。_Noreturnは従来処理系ごとに独自に付加していた属性情報(たとえばgccでは__attribute__((__noreturn__)))を標準化したもので、「呼び出し元に戻ることがない」という特殊な関数についてその特性を示すためにある。return文を持たない関数という意味ではなく(規格ではreturn文を持たなくとも、関数の最後の文の実行が終われば制御は呼び出し元に戻る)、_exitexecveを実行したり、例外、longjmpによる大域ジャンプ[注釈 6]などのために、制御が呼び出し元に戻らないことを明示するためにある。そのような関数は、スタックに戻りアドレスを積む通常の呼び出しではなく、スタックを消費しないジャンプによって実行できる。

C11規格では一部の機能を省略可能とした。即ちコンパイラがC11に合致していても、一部機能は提供しないことがある。コンパイラがどの機能を提供しているかは、テスト用のマクロで判別できる。アラインメント機能や_Atomic型、C言語ネイティブの原始的なスレッド機能などが、C11では省略可能な機能として追加された。また、複素数型と可変長配列はC99では必須機能であったが、C11では省略可能である。

gets関数が廃止された。

C17

2018年にISO/IEC 9899:2018(通称・C17またはC18)として改訂された。仕様の欠陥修正がメインのマイナーアップデートである[19]

C23

主なC言語処理系

大抵の処理系はC言語とC++双方をサポートしている。C言語とC++の共通部分を明確にし、2つの言語の違いに矛盾が生じないようにすることが課題になっている。

Linux・Windows・UNIX用

C++ Builder
Windows/macOS/iOS/Android対応のC/C++コンパイラBCCを含む、RADツール。以前はWindowsおよびx86のみがメインターゲットだったが、Clang/LLVMをベースに再設計され、多数のプラットフォームやアーキテクチャをサポートするようになった[20]。前身はDOS/Windows用のBorland C/C++。さらに前身としてTurbo C/C++がある。
Clang
LLVMをバックエンドとして用いるオープンソースのC/C++・Objective-Cコンパイラ。多数のCPUに対応。
GNUコンパイラコレクション (GCC)
C/C++以外の言語もサポートし、多数のCPUやオペレーティングシステムに対応、組み込み向けも含む多様な開発に広く使われるオープンソースのコンパイラ。独自拡張機能も多い。
GCC 4.5で実質的にC99を完全サポートした[21]
GCC 4.9で実質的にC11を完全サポートした[22]
Microsoft Visual C++ (MSVC)
Windows系プラットフォーム用のC/C++コンパイラ。ANSI C準拠(バージョン2013にてC99ライブラリをほぼ実装したが、言語機能など規格自体はサポートされていない)。x86・x64が主だが、Xbox 360Windows CE等向けにPowerPCARMMIPSItanium等に対応した版もある。前身としてMS-DOS・Windows用のMicrosoft C Compilerがある。またその廉価版としてQuick Cがあった[23]
Intel C++ Compiler (ICL/ICC)
インテル製のIA-32 (x86) およびIntel 64 (x64) 用のC/C++コンパイラ。Windows/Linux/macOS/Android向けがある。gcc互換。
バージョン11.1まではIA-64 (Itanium) をサポートするが、バージョン12.0以降ではサポートされない[24]
C99[25]とC11[26]の対応リストが公開されている。バージョン18.0でC11にほぼ対応している。
Open Watcom C/C++
Windows・Linux・OS/2・MS-DOS・DOSエクステンダを対象とするx86用C言語・C++コンパイラ。商用だったWatcom C/C++がオープンソース化したもの。
Portable C Compiler
gccが普及する以前のUNIXにおける標準的C言語コンパイラ。現在はオープンソース
Digital Mars C/C++
Windows・MS-DOS・DOSエクステンダを対象とするx86用のC言語・C++コンパイラ。無料版もある。ウォルター・ブライト作でDatalight C、Zorland C、Zortech C/C++、Symantec C/C++と変遷している。

組み込み用、8ビット・16ビット・32ビット・64ビットCPU用(クロスコンパイラ)

Green Hills Software C/C++英語版
組み込み向けのC言語・C++コンパイラ。 Windows用・Solaris用・Linux用があり、HP/UX用がver4ではあった。
CodeWarrior C/C++
組み込み向けやゲーム機開発向けのC言語・C++コンパイラ。Classic Mac OS用として発祥、かってはWindows用・BeOS用・Palm用もあった。
ARM C/C++
ARM CPU用C言語・C++コンパイラ。
IAR C/C++
新旧の組み込み向けCPU各種を広くカバーしていた。後に統合開発環境EW・SWに移行。使用には付属のドングルが必要だった。ARM CPU用C言語・C++コンパイラが著名。ARMをコアにした各社のCPUに対応している。
High C
元はx86向けでPC/AT互換機用だが80386のネイティブモードに対応したためFM TOWNSでも標準開発環境、「High C 386」として使用された。後に各社RISC向けとなる。
BDS-C
CP/M(8080・Z80)用のサブセット(整数のみ)のK&R系のC言語コンパイラ。現在はパブリックドメインソフトウェア
Hitech-C
Z80PICなど。
Lattice C
1980年代に、日本で高い普及率を見せたコンパイラ。解説書も多く出版されていた。日本での発売はライフボート。初期版はマイクロソフトCコンパイラ1.0として発売された。商用利用のできない個人向けの「personal」版も販売されており、これの価格は19,800円であった[27][28]
LSI C
8080Z80用のLSI C-80(セルフ版・クロス版。現在はクロス版のみ)と、8086用のLSI C-86がある。8086では機能限定(スモールモデルのプログラムしか開発できず、デバッガがない)の「試食版」がフリーソフトで公開され、広く使われた。
micro-C
8ビット・マイクロプロセッサMC6809用C言語サブセット・コンパイラ[29]
Small-C
元は8080向けの小型のC言語コンパイラだが派生版のクロスコンパイラとしてcc65(MOS6502用)や、z88dkなどがある。
SDCC
各種8ビット・マイクロプロセッサ向けのフリーソフトウェア(GPL)のC言語クロスコンパイラ。

関連する主なプログラミング言語

先祖

ALGOL
ヨーロッパ生まれのアルゴリズム記述言語。PascalやC言語などに影響を与えたとされる。
BCPL
MULTICSで作成された高級言語。
B言語
初期のUNIXで作成されたインタプリタ方式の高級言語。BCPLを元に作られ、Cの原型となった。

継承・拡張・サブセット

C++
C言語を拡張してオブジェクト指向化したもの。Simulaの影響を強く受けている。当初はC言語のスーパーセットだったが、現在は細かい部分において非互換仕様が増えている。
Objective-C
C言語を拡張してオブジェクト指向化したもの。C言語に Smalltalk のオブジェクトシステムを取り付けたような設計で、互換性は保たれている。C言語からの拡張部分がC++と干渉しないため、C++と混在した記述が可能。
Java
C++よりも言語文法レベルでオブジェクト指向を重視した言語。バッファオーバーランなどの危険性が高いポインタといったローレベルな要素を言語文法から排除している。仮想マシンJava VM, JVM)上で動作する。
C#
マイクロソフト.NET Framework向けに開発した言語。文法はC言語およびC++に近い書式を持ち、Javaと似ている部分も存在するが、機能的にはDelphiがベースとなっている。
Rust
C言語およびC++に代わるシステムプログラミング言語を目指している言語。言語レベルでのRAIIの強制による自動メモリ管理機構を持ち、ガベージコレクション無しでも手動のメモリ管理が不要であり、実行性能はC/C++と同等である。
Cyclone英語版
C言語の上位互換セキュア実装。ポインタの扱いを厳格化して安全面に配慮して拡張したもの。その他リージョンベースメモリ管理システム、正規表現、タグ付共用体などを追加している。
SystemC
ハードウェア記述言語向けに拡張したもの。書式はC++。IEEE 1666-2005。ISO 8866:1991。
Impulse C英語版
ハードウェア記述言語向けに拡張したもの。書式はC。
Unified Parallel C
並列計算向けにC99を拡張して作られた言語。
Cg
C言語をGPU上での3次元コンピュータグラフィックス処理用に特化させたもの(シェーダー言語、シェーディング言語)。NVIDIAによって開発された。

その他にも、OpenGLシェーダー言語であるGLSLDirectXDirect3D)シェーダー言語であるHLSLOpenCLカーネル記述言語であるOpenCL-Cなど、C言語の文法的特徴を取り入れた派生言語やDSLが多数存在する。

注釈・出典

注釈

  1. ^ 英語ではC-family, C-style, C-likeなどと呼ばれる。「C系」の定義は明確ではないが、構文がCに類似しているものを指すことが多い。
  2. ^ 例えばポインタのエイリアシングは最適化やベクトル化を妨げる[1]
  3. ^ 他の言語、例えば、BASICPascalではプログラム開始直後に実行するプログラム要素はサブルーチンや手続きや関数ではない。
  4. ^ C89においては関数プロトタイプは必須ではない。
  5. ^ C89規格に準拠しないソースコードをGNU Cコンパイラでコンパイル失敗させるには、
    gcc -ansi -pedantic -fstrict-aliasing -Wall -Wextra -Wmissing-declarations -Werror test.c
    とすれば良い(→エイリアシング)。
  6. ^ setjmp.hを参照。

出典

  1. ^ iSUS
  2. ^ もう一度基礎からC言語 第19回 いろいろな演算子~ビット演算子 Cは高級アセンブラ?
  3. ^ 第1回 Chapter 1 C言語の概要(1):Cプログラミング入門|gihyo.jp … 技術評論社
  4. ^ ISO/IEC 14882:2003 §3.6.1 「The function main shall not be used within a program.」
  5. ^ JIS X 3014:2003「プログラム言語C++」日本産業標準調査会経済産業省) §3.6.1 「関数mainは、プログラムの中で挙用してはならない。」
  6. ^ EXP33-C. 未初期化のメモリを参照しない JPCERT/CC、2014年3月25日(2014年8月22日閲覧)。
  7. ^ Memory Allocation Guide”. The Linux Kernel documentation. 2023年11月8日閲覧。
  8. ^ a b Main function” (英語). cppreference.com. 2025年5月30日時点のオリジナルよりアーカイブ。2025年6月5日閲覧。
  9. ^ [Python入門]Pythonってどんな言語なの?:Python入門(1/2 ページ) - @IT
  10. ^ Hello, Worldプログラム | Programming Place Plus C言語編 第2章
  11. ^ Portability of C Programs and the UNIX Systems
  12. ^ a b The Evolution of the Unix Time-sharing System
  13. ^ [\{{URhttp://japan.zdnet.com/glossary/exp/%E3%82%BD%E3%83%BC%E3%82%B9%E3%83%AC%E3%83%99%E3%83%AB%E4%BA%92%E6%8F%9B/?s=4|ソースレベル互換}} - ZDNet Japan
  14. ^ http://www.tohoho-web.com/ex/draft/kanji.htm
  15. ^ Rust言語でAndroidはより強固・安全に ~GoogleがOS開発への導入を進める - 窓の杜
  16. ^ Microsoft、Windows 10の一部をRustへ書き換えてセキュリティ強化狙う - TECH+
  17. ^ C FAQ 11
  18. ^ 6.19 Arrays of Variable Length
  19. ^ C の歴史 - cppreference.com
  20. ^ Clang 拡張 C++ コンパイラ - RAD Studio
  21. ^ Status of C99 features in GCC - GNU Project - Free Software Foundation (FSF)
  22. ^ C11Status - GCC Wiki
  23. ^ “Microsoft Releases C Program Wares, Provides Rebates”. InfoWorld: p. 29. (1987年11月9日). https://books.google.pl/books?id=Sj0EAAAAMBAJ 
  24. ^ インテル® C++ Composer XE 2011 Windows* 版インストール・ガイドおよびリリースノート - w_ccompxe_2011.7.258_Release_Notes_ja_JP.pdf
  25. ^ C99 Support in Intel® C++ Compiler | Intel® Software
  26. ^ C11 Support in Intel C++ Compiler | Intel® Software
  27. ^ 脇英世(監修)、1987、『パソコンの常識事典』、日本実業出版社 pp. 339、342 - 普及率、解説書の多さについて。
  28. ^ 長沢英夫(編)、1988、『パソコンベストソフトカタログ』、JICC出版局 pp. 201 - Personal版、解説書の多さについて。
  29. ^ ucom10 1983, p. 80.

参考文献

2025年現在、初心者向けのイラスト入り入門書やサブルーチンのサンプル集の他、組み込み機器の制御や科学技術計算など目的を特化した専門書なども多数ある。便利な機能の説明はあっても、学習者の水準や目的にあった本を見つけるのは必ずしも容易でない。オープンソースのCコンパイラ、OSも大規模なものがあり、直接読み始めるのは困難になっている。オープンソースのOSの小規模なものから始めるとよい。

プログラミング言語C
ブライアン・カーニハン、デニス・リッチー 共著、石田晴久訳、共立出版
「K&R」として知られている「The C Programming Language」の邦訳。入門書ではなく、特にプログラミングそのものが初めてという読者には不適である。初版と第2版があり、第2版が現在も時折増刷されている(邦訳では事情により、原書第2版を基とした版には旧版と改訂新版がある。旧版は装丁が緑地で新版は白地である)。標準の制定以前は本書初版を言語仕様の参考文献として扱っていたが、現在はISOなどの標準規格を参照すべきであり、本書の記述は参考にとどめるべきである。なお、日本工業規格(現・日本産業規格)のJIS X 3010:2003「プログラム言語C」は、ISO/IEC JTC1 SC22 WG14+ISO/IEC 9899:1999 Cor. 1:2001(E)つまりC99の和訳相当で、2021年8月現在の最新規格であるISO/IEC 9899:2018との乖離を生じている。
Cプログラミングの落とし穴英語版
コーニグ、中村明訳、新紀元社
Cプログラミングで嵌まるところを指摘している。MISRA Cでも参考文献になっている。
Cパズルブック
アラン・R. フューアー、田中和明訳、カットシステム
Cプログラミングの芸当を示し、読み書きを推奨しない例を示している。
『マイコンピュータ No.10』CQ出版社、1983年9月1日。 
入門特集 C言語の研究

外部リンク

ウィキメディア・コモンズには、C言語に関するメディアがあります。





固有名詞の分類

このページでは「ウィキペディア」からC 言語を検索した結果を表示しています。
Weblioに収録されているすべての辞書からC 言語を検索する場合は、下記のリンクをクリックしてください。
 全ての辞書からC 言語 を検索

英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「C 言語」の関連用語

C 言語のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



C 言語のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのC++ (改訂履歴)、C言語 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS