栄養素 (植物)とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 栄養素 (植物)の意味・解説 

栄養素 (植物)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/02 14:10 UTC 版)

植物生理学における栄養素には、必須栄養素(ひっすえいようそ、: essential nutrient)と有用栄養素(ゆうようえいようそ、英: beneficial nutrient)の2種類が存在する。必須栄養素とは、植物が生長するために、外部から与えられて内部で代謝する必要がある元素である。対して有用栄養素とは、植物の正常な生長に必ずしも必要ではないが、施用することで生長を促進したり収量を増加させたりする栄養素である。

ダニエル・イズラエル・アーノン英語版は植物の必須栄養素を、その元素がないことにより植物がその生活環を全うできないもの、と定義した[1]。後に、エマニュエル・エプスタイン [英: Emanuel Epstein] は、植物の生育に必須な成分や代謝物を構成することも、必須元素の定義であると提案した[2]

分類

現在、植物一般の必須栄養素として以下の17元素が知られている。これらは、一般に植物の要求量が大きい多量要素(植物組織の乾燥重量の0.2%以上)と、小さい微量要素(同0.02%以下)に大別されている[3]

必須栄養素のうち、CとOとHを除いたものを無機栄養素 [英: mineral nutrition] という。無機栄養素が植物に吸収されるとき、その形態はほとんどの場合、水に溶けた水溶性の無機塩である。この無機塩の形態をその無機栄養その可給態と呼ぶ。可給態はその植物の支持体(土壌や栽培用の培地など)からによって植物体へと吸収される[4]。無機栄養素に対して、それ以外の必須栄養素であるCとOとHでは、植物による被吸収形態は大気中の二酸化炭素および分子である(無機塩ではない)。CとOとHは、植物の生育において無機塩として土壌や培地に存在する必要がない。

肥料成分にNとPとKの3栄養素は最も大量に必要であり、この3要素を肥料の三要素 [英: three major nutrients] という。

何が必須栄養素となるかは、植物間はもちろん、同種クローンの個体間でさえ異なる。必須栄養素の存在量が不足でも過剰でも植物に障害は現れる。また、ある必須栄養素量が低水準であるとき、他の必須栄養素の存在量は相対的に大きくなり、その過剰障害が現れることがある。例えば、硫酸イオンSO42−が不足しているとき、硝酸イオンNO3などの他の要素の取り込みは影響を受ける。また、カリウムイオンK+の取り込みはアンモニウムイオンNH4+の存在量に左右される[5]

分布

普通、世界中の土壌は、人為的に肥料を与えずとも植物に十分な量のすべての必須栄養素を供給する。が、一般的に肥料の供給(施肥)は植物の更なる生長と収量の増大をもたらす。また、大部分の作物において収量はその作物が吸収した肥料成分の量に比例して増加する[6]。一方で、ほとんどの場合、作物は、与えられた肥料から栄養を半分ほどしか利用できない[6]

生物の死骸やその他環境中に放出された有機物微生物分解作用を受けて難生分解性物質の土壌中の堆積物となった腐植土は、必須栄養素を長期間にわたって持続的に植物へ供給し続ける[5]

取り込み

植物は根と葉から外界の栄養素を取り込む。根は、土壌溶液中に溶けている栄養素や水分を吸収し、導管液に溶解させて導管を通じて地上部の各組織へと輸送する。分配後も、師管を通って別の組織に再輸送されることもある。一方、葉は大気中から二酸化炭素を取り込み、それを基質としてアミノ酸を合成する。これらの生産物も輸送され、根や子実へと蓄積される。根や葉におけるこれら全ての過程において、植物細胞膜上に存在する無数の膜輸送体が関与する。膜輸送体は特定の化合物のみを選択し、外界から細胞内へ、細胞から別の細胞へ、あるいは植物体内の管から/への輸送の通り道となる。

一部の植物は特定の物質を全くあるいは限定的にしか取り込まない。例えば、ハンノキの枝は一般的にモリブデンを蓄積するが、砒素は取り込まない[7]。一方で、トウヒの樹皮はこれと逆の性質を持つ[7]

寄生植物食虫植物といった、他の生物から栄養素を取り込む植物も存在する。

根による取り込み

根は植物の地上部を支えるとともに、その支持体から栄養素と水分を吸収する。支持体は、土壌や水耕栽培用養液、あるいは水生植物であれば水、特殊な例では気耕栽培システム [注釈 1]により霧状の養液が充満した空気中である。吸収する栄養素は部位によって異なるが、ほとんどの必須栄養素の取り込みは根毛細胞のプロトンポンプで行われている[8]。根毛のプロトンポンプは、水素イオン (H+) を負に荷電した土壌粒子へ供給し、その際に生じるエネルギーにより、無機塩カチオンである栄養素を植物体へと送り込む。特にカリウムの吸収には根毛が大きく寄与する。しかし、すべての栄養素の取り込みに関わるわけではなく、カルシウムやケイ酸の吸収にはほとんど寄与しない[9]。根毛以外の根の部位も栄養素を吸収し、例えばリン酸は先端が、ケイ酸は基部が取り込む。

根は、表皮細胞と接した、(土壌)溶液に溶けた栄養素を吸収する。外の溶液中から表皮細胞へと栄養素を取り込む機構は主に次の3つである。

  • 単純拡散 - O2、CO2NH3といった非極性分子の濃度勾配に従って起こる、輸送タンパク質を介さず細胞膜上の脂質二重膜を貫通する拡散運動。
  • 受動輸送(促進拡散) - 輸送タンパク質による、高い濃度側から低い濃度側への溶質または溶質中のイオンの速い移動。植物内部の水ポテンシャルによって調節されており、これが土壌中のそれより負のとき、栄養素である無機塩の濃度が植物内部でよりも土壌で高いことになり、植物への流入につながる。
  • 能動輸送 - エネルギーを消費して輸送タンパク質が行う、低い濃度側から高い濃度側へのイオンや分子の移動[5]。植物の細胞膜は、細胞内外でイオン濃度が平衡であるとき-100 mVから-150 mVの負の電位差を持つ[9]。ここで負は細胞内側、正は外側である。この膜電位は、主にプロトンポンプとカリウムチャネルによるイオン輸送が釣り合うことで生じていると考えられている。

表皮細胞へと取り込まれた栄養素は中心柱の導管へと運ばれる[注釈 2][5]。そこまでの経路にはアポプラスト経路シンプラスト経路の2つがある。アポプラスト経路とは、細胞と細胞との隙間や、細胞壁の中を通る経路である。しかし、成熟した根では内皮にカスパリー線があり、これが水と水に溶けた栄養素の流入を遮断する。実はこのことが植物の栄養素の吸収量の調節を助けている[5]。根端ではカスパリー線が未発達なので中心柱まで入れるが、導管もまた未発達である。このため、根端でのアポプラスト経路から直接導管に入る植物栄養素は少ないと考えられている。一方、シンプラスト経路とは、表皮細胞に取り込まれて細胞間の原形質連絡を通って移動する経路である。原形質連絡は、隣接する植物細胞間を隔てる細胞壁を貫く筒状の構造体である。

取り込まれた植物内部の栄養素は、その植物で最もその栄養素を必要とする場所へと運搬される。例えば、栄養素の供給は下葉(古葉)へよりも若い葉へと優先的に行われる。そのため、あらゆる必須栄養素の不足障害は、不足している栄養素の植物体内の移動が容易であるとき、最も古い葉から顕著に現れる。しかし、すべての栄養素の可動性は等しくなく、窒素、リン、カリウムは可動性であるが、他の要素に関しては可動性の程度がさまざまである。可動性が低い栄養素の不足障害は、不足栄養素が古い葉から移動せずに留まるため、古い葉ではなく若い葉で先に現れる。この障害症状の違いは、不足している栄養素の特定に重要である。

葉による取り込み

植物の葉には気孔が存在し、これが大気中から二酸化炭素を取り込み、炭素および酸素の供給源とする。取り込まれた二酸化炭素の主に光合成の基質となる。機構は、光合成の結果生ずる酸素を排出する働きも持つ。また、植物の葉は硫酸イオンを取り込むことができる。

微生物との共生による取り込み

多くの植物は微生物と共生している。特に、以下の2つの共生微生物が植物の必須栄養素の取り込みに大きく寄与する。

窒素固定細菌
大気中の窒素分子 (N2) を、植物が窒素源として利用できるアンモニウム (NH4) に変換する生物学的窒素固定を行う細菌。マメ科植物と共生する根粒菌など。
菌根菌
植物の表面で菌根を形成する糸状菌。菌根はリン酸や窒素塩などを吸収すると植物へと供給し、菌根菌はその見返りとして植物から炭素化合物を受け取る。植物にとって、自身の根がカバーする以上の範囲から栄養素を取り込むことができるため、菌根菌との共生は植物生長を促進する効果がある[5]

窒素は地球の大気中の最も豊富な気体成分であるが、窒素固定細菌と共生している植物種は少なく、大部分の植物は窒素の供給源を土壌中の窒素化合物に依存している。土壌中の窒素の無機塩は土壌有機物の無機化や肥料の施用などにより放出される。

植物体内での輸送

植物体内で栄養素は様々な場所へと輸送されている。細胞から他の細胞への輸送は細胞膜上の特定のタンパク質(膜輸送体)によって行われている。膜輸送体は3つに分類される。

  • ポンプ - プロトンおよび、カリウムやナトリウムなどの電荷を持った無機塩などの電荷を持たない物質を、膜内外の濃度勾配に関係なく輸送する能力を持つタンパク質。一次輸送を担う。プロトンATPアーゼやABC輸送体がこれに該当する。
  • キャリアー - キャリアーはもともと、エマニュエル・エプスタイン [英: Emanuel Epstein] がその存在を予想し命名したイオン輸送タンパク質である。植物体内への輸送速度と外液の濃度の関係があたかもミカエリスメンテン式に従う、すなわち、輸送するイオンに対して固有の結合定数(Km)と最大輸送速度(Vmax)を持つ。カリウム、硝酸イオン、リン酸イオン、硫酸イオン輸送体などがこれに当たる。キャリアーの中にはイオンチャネルであるものも含まれる。
  • イオンチャネル - 比較的速いイオンの輸送を担うタンパク質。条件によってイオンを通したり通さなかったりする。電気化学ポテンシャルの勾配に従った受動輸送をする。

細胞内輸送

細胞膜を越えて吸収された栄養素は細胞質で利用されるだけでなく、一部は細胞内小器官へと輸送される。これを細胞内輸送と呼ぶ。細胞内小器官は独自の膜で覆われている。細胞膜と同様に、膜上の輸送体に認識された特定の溶質以外は通さない。この出入の特異性により、小器官が担う化学反応を引き起こしたり、栄養素を貯蔵したり、細胞質に(ある濃度以上に)存在すると不都合な物質を隔離したりすることを可能にしている。

長距離輸送

トウモロコシの輸送液の組成(mM)
溶質 導管液[10] 師管液[11]
スクロース 3.8 900
フラクトース 0.8 0
グルコース 0.8 0
アミノ酸 1.8 375.2
グルタミン酸 0.19 59
アスパラギン酸 0.24 17.3
グルタミン 0.31 0
アスパラギン 0.14 7.2
セリン 0.22 27.8
アラニン 0.2 5
有機酸 18.3 -
NO3- 1.8 3.2
Cl- - 273
K+ - 479.5

導管と師管による輸送を長距離輸送 [英: long-distance transport] という。導管は、根から取り込まれた栄養素を地上部へと運ぶ。師管は、古い葉から、成長途上の葉や種子などへの再輸送(転流 [英: translocation])を行う。なお、導管や師管に水や栄養素を導入することを積み込み(ローディング [英: loading])という。逆に、導管や師管から出すことは運び出し(アンローディング [英: unloading])である。 シンプラスト経路から中心柱へと来た栄養素が導管へと積み込まれるとき、いったん細胞外へと出され、導管の中心にある細胞木部要素で形成されたアポプラスト経路を通る。カリウムやホウ素ではこの積み込みのための膜輸送体が同定されている。これらの輸送体は導管周辺の細胞膜上にあり、細胞内の基質を細胞外へと輸送する。ケイ素では、導管を通った後の地上部組織への運び出しに関与する輸送体Lsi6が同定されている。Lis6が機能しなくなると、葉に運ばれてきたケイ素は葉の組織へと移行することができず、葉の先端の水孔から排出されてしまう。

師管は、土壌から獲得した栄養素や光合成産物、代謝産物を輸送し、植物の生長調節に重要な役割を果たす。物質によって積み込まれやすいものとそうでないものがある。稲では師管による輸送速度は1時間当たり50 cmから100 cm程度であると推測されている[12]緑茶では師管での水の流れは師管内圧の差によって作られていると考えられている。この圧力差は、光合成産物の生産元の細胞(ソース側 [英: source side])でのショ糖の積み込みによる内圧の上昇と分配先(シンク側 [英: sink side])でのショ糖の運び出しによる内圧の低下により生じているようである。

短距離輸送

ソース側から、師管を取り囲む数個の細胞[注釈 3]を通って師管まで積み込む過程をソース内短距離転流という。師管から出た後、再びいくつかの細胞を通ってシンク側に運び出す過程はシンク内短距離転流という。

ソース内短距離転流の出発は、葉緑体内で合成された光合成初期産物(C3植物ではスクロース、C4植物ではリンゴ酸アスパラギン酸などのC4ジカルボン酸)が葉緑体の包膜を通過して細胞質を出るところである。包膜は内外2枚あり、このうち透過する物質の選択は内膜が行う。C4植物の葉肉細胞葉緑体では内膜の内側に網上膜構造 [英: peripheral reticulum: PR] が発達し、光合成初期産物の細胞質への輸送を促進している[13]。PRは葉緑体内部のチラコイド膜と内膜に連絡しており、葉緑体内部と包膜の接触面積を拡大させているのである。一方、C3植物ではPRはほとんどない。

細胞質に出た後、光合成初期産物は細胞質対流に乗って移動する。この間、小胞体に取り込まれており、各種酵素から隔離されている。隣接細胞に移動する際、原形質連絡を通る。原形質連絡の出口は別の小胞体内部につながっており、運搬された物質は通過後に直ちに保護される。

師管へは、維管束を取り巻く維管束鞘細胞をシンプラスト経路で経由する。維管束鞘細胞には葉緑鞘細胞とメストム鞘細胞がある。葉緑鞘細胞はスクロースを合成しており、スクロース合成が師管のすぐそばで行われることにより光合成産物の短距離転流が促進されている。C4植物ではスクロース合成の基質となる二酸化炭素は、C4植物のソース内短距離転流の出発物質であるC4ジカルボン酸から生成されるため葉緑鞘細胞内に高濃度で存在する。一方、C3植物ではスクロース合成は葉肉細胞でも行われる。一般にスクロースはスクロースの濃度勾配に従って原形質連絡を通って輸送されるため、C3植物では葉緑鞘細胞のスクロース濃度を低く調節する必要がある。調節のため葉緑鞘細胞内のスクロースはそのままで液胞およびデンプンとして細胞質へ貯蔵される。それでも足りなければデンプンは葉緑体でも蓄えられる。

一部の植物(C3植物のイネ科全部とC4植物の一部)ではメストム鞘細胞があり、その細胞壁上の原形質連絡を通って師部柔細胞に流入する。メストム鞘細胞の細胞壁には水に対して不透過性のスベリン層があり、これは師部柔細胞へ流入後のスクロースが維管束の外へ逆流しないようにする役目がある。C4植物のある種の葉身では維管束が葉緑鞘細胞のみで囲まれており、その細胞壁にはスベリン層が発達している。葉緑鞘細胞でのスクロース合成のための二酸化炭素の基質となるC4ジカルボン酸は、スベリン層を貫通する原形質連絡を通過して葉緑鞘細胞に入るが、葉緑鞘細胞内の二酸化炭素はスベリン層によって封じ込められている。

貯蔵

細胞壁は栄養素の貯蔵庫として機能する。細胞壁のガラクツロン酸にはカルボキシル基pKa=4.2)があり、弱酸性の土壌溶液中では負の電荷を持つ。このため、陽イオンは細胞壁にイオン的に吸着され、重金属イオンもイオン結合配位結合によって保持される。陰イオンはカルボキシル基の負電荷で反発するが、リン酸イオンは細胞壁上の金属イオンに吸着することができる。根の細胞壁に貯蔵された鉄は、植物が鉄欠乏になると徐々に吸収される。

多量一次要素

炭素

炭素は、有機物に必須な構成元素である。有機物には、タンパク質糖質脂質核酸などがなり、これらは生物一般で細胞や組織の構造と機能に欠かせない。植物の場合、デンプンやセルロースも、重要かつ植物体中に豊富な有機物である。植物とって主要な炭素源は大気中の二酸化炭素であり、取り込まれた二酸化炭素は炭化水素に変換された後、様々な有機物の材料となる。

水素(水)

水素は第一に水を、第二に植物中の全ての有機物を構成する。細胞内の水素イオン(プロトン)の濃度勾配は光合成や呼吸のための電子の運搬に必要である[5]。植物はほぼ水から水素を得ている。

植物内外での水の移動は数式で表すことができる。外界から、あるいは隣り合った他の細胞から細胞に水が移動(吸収)する単位時間当たりの量Jは「水ポテンシャル差」(V)と「透過性」(G)の積である[14]水ポテンシャルの差とは、水の吸収(脱水)を引き起こす力と理解されている。実際の取り扱いでは、水ポテンシャルは浸透ポテンシャルと圧ポテンシャルとマトリックポテンシャルと重力ポテンシャルの和である[15]。透水性の膜を通して水ポテンシャルに差があるとき、例えば細胞内外で水ポテンシャルに差があるとき、水ポテンシャルが高いほうから低いほうへと水は移動する。

土壌中のマトリックポテンシャルは主に降雨と蒸発散によって変動する。その他を含めた全ポテンシャルは表層から50 cm程度までで変動している[16]。それ以深では比較的変動が小さい。また、深いほど土壌中の含水率は高い。これは、深いほどマトリックポテンシャルは高く、同程度のマトリックポテンシャルに対する含水率が高いためである。

基本的に、土壌中の水分は含水率が高いところから低い所へと流れていく。このことを、動水勾配に従う、と表現する。この動水勾配において、土壌マトリック(土壌粒子といった、土壌内の固相)間の大孔隙を水が流れることが重要である[17][18][19]。この大孔隙の水の流れをバイパス流という。降雨や灌漑などにより大孔隙が水で満たされたとき、水分と溶質の移動に分散と吸着の影響がほとんど無くなる。これにより、浸透速度が飛躍的に上昇し、かつ、水分と溶質の分布は不均一となる。

乾燥や塩ストレス下では土壌の水ポテンシャルは低い。このまま何もしなければJはマイナスとなり、植物体から水が抜け出て脱水してしまう。これを防ぐ適応手段は植物に2つある。一つは、細胞や組織の水ポテンシャルを低下させることである。具体的には、細胞内にイオンを取り込んだり、ベタインプロリンなどの特定の有機物質(適合溶質、浸透圧保護剤 [osmoprotectant])を蓄積したりして、浸透圧を上げ(浸透ポテンシャルを下げ)る。もう一つは、水を吸収する(根)細胞の透過性Gを高める方法である。根系全体の水透過性は「根の総表面積」(S)と「単位面積当たりの水透過率」(Lp)の積である。このため、Gの増大は、根の量(S)の増加や、水チャンネルアクアポリンの数や活性(Lp)の制御によって実現される。

植物体内での水の輸送はシンプラストと(狭義の)アポプラスト液胞横断のいずれの経路によっても行われる。広義では、アポプラスト経路は液胞横断を含む。根のカスパリー線では内皮細胞より外側で広義のシンプラスト経路で水は取り込まれる。カスパリー線ではアポプラスト経由の水輸送はブロックされるためである。導管中の水は、蒸散による吸引力やマトリックスポテンシャルによって上昇し、地上へと運ばれて各組織へ分配される。10 m以上の高木でも導管内の水は途切れることなく樹幹まで到達できる。

シンプラストでの取り込みでは、細胞膜の水チャネルアクアポリンが重要である。アクアポリンがないと生体膜の水透過性は、ある場合の十分の一以下となる[14]。導管に入るときと出るときで、水が通過する内皮上のアクアポリンは異なる。

酸素

酸素源として、酸素分子や水H2Oもしくは二酸化炭素CO2は植物の細胞呼吸に必要である。細胞呼吸は、糖を消費して、生物のエネルギー通貨であるATPを合成する生化学反応である。ATP合成の基質である糖は光合成により合成され、光合成により副産物として酸素分子が植物体外に排出されるが、ATP合成のために糖を分解する際に酸素が要求される。

窒素、リン、カリウム

窒素、リン、カリウムの3つは肥料の三要素と呼ばれる。

多量二次要素

カルシウム

被子植物は乾燥重量当たり1.8%程度のカルシウム(Ca)を含む[20]。含有量はアカザ科アブラナ科ナス科などの双子葉植物で高く、イネ科植物で低い。石灰岩母材とした土壌では、Ca濃度とpHが高い。このような土壌では、好石灰植物 [calcicole][注釈 4] と呼ばれる特徴的な植生が発達する。一方、低Ca濃度と低pHを好む植物は嫌石灰植物 [calcifuge][注釈 5] という。

植物のCa吸収は特徴的である。根端および側根の着床部位など限られた部位で行われる[20]。吸収速度は外部のCa濃度に依存し、外部の濃度が低いとき吸収速度も小さい。これは、Caの吸収は、植物体内での拡散や外気への蒸散に依存した受動的なものだからである。したがって、蒸散が抑制される条件下(暗所、高湿度)では吸収速度は抑制される。また、Caイオンは導管を通って植物体内を移動し、末端部分へは根圧と拡散によってのみ分配が行われている。このため、葉に分配されたCaイオンは最上位葉や地下部にほとんど再分配されない。また、登熟中の子実や結球部分など、蒸散が少なくかつ細胞が急速に発展している部分でCaは不足しやすい。

Caイオンは農業上重要である。その効果の一つは、Naイオンの過剰害および、酸性土壌でのプロトンやAlイオンの過剰害の緩和である[21]。例えば、水耕液のCa濃度が0.1 mMの時、50 mMのNa塩はインゲンの生育を大きく阻害するが、Ca濃度を10 mMとすると阻害は軽微となる[22]。Caの効果はNa濃度やpHやAl濃度などの環境条件に左右されるため、植物にとって最適なCa濃度もそれらによって変動する。

生理学的なCaイオンの主な役割は細胞壁の成分である[23]。細胞壁を構成するペクチンカルボキシル基に結合している。ここでの機能はペクチン質多糖同士を架橋し、ゲル化させて細胞壁に固定することである[24]。架橋するときに、ペクチンの特定の酸性化合物と結合し、Caは不溶性の塩となる。このため、何らかの処理(低pH、高濃度NaClキレート剤など)で細胞壁からCaイオンを離脱させるとペクチン質多糖が可溶化する。ペクチンとの密接な関係から、Caの含有率はペクチン質多糖の含有率と正の相関を持つ[20]。例えば、細胞壁の含有率が高い双子葉植物でCa含有率も高く、低いイネ科植物でCa含有率も低い。また、Ca含有率が細胞壁の強度と相関するため、作物において細胞壁中含有率が高いときに病害や虫害への耐性は強くなる。例えば、大豆での茎疫病、ナスでの青枯れ病への耐性、また、タバコでのアブラムシへの忌避作用に有効である。

細胞質において、Caは他の栄養素の運搬の制御、特定の酵素の活性化、光合成に関わる[25][26]。主に、セカンドメッセンジャーとしての細胞内での情報伝達が重要な役割である。また、植物分裂組織にも密接に関わる。特に、細胞分裂、細胞伸長、および水素イオン解毒における役割で根の発達に重要である。そのほかの機能は、有機酸の中和、Kにより活性化するいくつかのイオンの阻害、窒素の取り込みへの関与などである。

細胞質中のCaイオン濃度は0.1 μM程度に保たれている[20]。この濃度は、細胞壁中濃度に比べて低い。これは、Caイオンが、ATPやDNAなどのリン酸基やリン酸イオンと結合して不溶性の塩を形成するためである。細胞膜にはCaを能動的に細胞内へ取り込む機構はないが、排出機構は発達している。さらに、このCaイオン排出ポンプは、Caを集積する細胞内小器官(ミトコンドリア小胞体など)と協調して細胞質内濃度を調節している。

通常時に細胞質内濃度が低いことを利用し、この濃度を一時的に上昇させることで細胞の生理活性を制御する仕組みが植物には存在する[20]。実は、Caの細胞質内における役割で最も重要なのはこの情報伝達である。一部のタンパク質(カルモジュリンカルシニューリンなど)にカルシウムが結合するとその立体構造が変化する。酵素の場合、活性化する。Caイオン濃度が低下するとCaイオンはタンパク質から素早く解離し、このタンパク質の構造は不活性なものに戻る。アブシジン酸による信号や特定の養分の欠乏なども、細胞にはCa濃度の変化を通じて伝達される。

Ca欠乏症についてはカルシウム欠乏症 (植物)を参照。

マグネシウム

マグネシウム(Mg)は植物に乾燥重量当たり0.3-1.0%含まれている[20]。他の必須元素と比べて、種や品種間での植物体内含量の違いは小さい。緑葉中のMgの10-20%は、クロロフィルポルフィリン環の中心金属である[20]。その他は葉緑体ストロマ細胞内小器官で、イオンあるいは、有機酸やATPと結合した塩として存在する。穀物中のアリューロン顆粒においてはMgはフィチン酸塩として蓄積されている。

根の細胞によるMgの吸収は能動的に行われており、細胞内濃度は0.4 mM程度に維持されている[27]。この吸収には膜輸送体Magnesium transporter)が関与している。シロイヌナズナでは10種類[28]、稲では9種類のMg輸送体が存在する。これらの輸送体は、細菌のMg輸送体CorA相同性がある。

アサガオを用いた研究で、植物体内のMgの分布について興味深い事実が発見されている[29]。第一に、Mg濃度は根から地上部の頂芽にかけて次第に高くなり、頂芽での濃度は根での2倍以上に達する[20]。第二に、アサガオの若い組織での濃度は、根のそれとは異なり一日を通して変化し、日中に高くなる。第三に、栄養成長期には茎頂先端部の中央帯にMgは集積される。この時期に幹細胞での活発な細胞発生にMgが要求されることが示唆されている。最後に、花芽が誘導されるとき、中央帯は周りの組織から隔離されてMg濃度は減少する。この濃度低下により、花成に関連する遺伝子や酵素が働き始めると予想されている。

Mgは、リン酸化合物と結合することにより多数の酵素反応に関与する[20]。リン酸化合物と結合する理由は、Mgがリン酸基の酸素に対して親和性を持ち、配位結合の性格を持ったイオン結合で会合できるためである。Mgが関与する酵素には、RNAポリメラーゼATP分解酵素タンパク質リン酸化酵素脱リン酸化酵素グルタチオン合成酵素カルボキシル基転移酵素などがある[30]。葉緑体の鍵酵素は、葉緑体内のMg濃度のわずかな変化で大きな影響を受ける[30]。また、Mgは細胞膜やリボソーム表層のリン酸基に結合して、その立体構造の維持を担う[30]。タンパク質合成、解糖系TCA回路、窒素代謝系を含む生化学反応にも重要である。

ストロマ内の酵素ルビスコで行われている、カルビン回路での炭酸固定反応にも関与する。Ru-5-PキナーゼやPEPカルボキシラーゼといった、炭酸固定に関与する多くの酵素は補因子としてMgを要求する。

また、ストロマでのMg濃度は間接的に外の光量によって変動する。この変動が、光の量や時間帯によって光合成の活発さを調節する仕組みとなっている。その機構は次の通りである。まず、光量によってストロマでのpHは変動する。ストロマがアルカリ化するとチラコイドは酸性化してここからMgイオンがストロマへと供給される[20]。ストロマのpHが8.5に達したとき、Mgイオン濃度は最適となり、炭酸固定反応は最も促進される。

Mgの不足症状についてはマグネシウム欠乏症 (植物)を参照。

硫黄

硫黄アミノ酸メチオニンシステインシスチンなど)、システインから合成されるグルタチオンや含硫タンパク質、スルホ脂質、補酵素(補酵素Aなど)、ビタミンビオチンチアミンなど)、ファイトケラチン、メタロチオネインチオレドキシンの構成要素である。タマネギやニンニクの刺激成分アリシン、マスタードやブロッコリーのグルコシノレートも含硫化合物である。

タンパク質のシステイン残基のメルカプト基(SH基)は、酸化還元酵素タンパク質分解酵素の活性中心である。2つのメルカプト基はジスルフィド結合(-S-S-)を形成する。ペプチド鎖同士を架橋し、タンパク質の三次構造の決定や構造維持に重要である。この結合の形成はまた、システイン2分子からシスチン1分子、還元型グルタチオン2分子から酸化型グルタチオン1分子を合成させる。システイン残基を含む鉄-硫黄クラスターは電子伝達を担う。

硫黄不足の症状はクロロシス、成長抑制、アントシアニンの蓄積による紫化である[15]。これらの症状は、主にアミノ酸とタンパク質の合成が阻害されることによる。硫黄同様にアミノ酸とタンパク質の構成成分である窒素不足のそれと類似している。硫黄不足の時、窒素は硫黄に対して過剰になるためアルギニングルタミンなどが蓄積する[31]。硫黄は窒素と異なり、植物体内での移動性が低く、不足症状は成熟もしくは若い葉から現れる。

硫黄が欠乏した植物は、種子に貯蔵するタンパク質(種子貯蔵タンパク質)を変化させる。大豆の場合、相対的に含硫アミノ酸の割合が低いβ-コングリシニンのβサブユニットの含有量が増え、含硫アミノ酸の割合が高いグリシニンのそれは減る[32]。これは、種子中のタンパク質総量を減らさないための戦略である。硫黄を十分に与えた場合には逆にグリシニンが増え、βサブユニットは減る。この制御にはO-アセチルセリンが関わる[33]。含硫アミノ酸含量が少なくなった小麦は製パンに向かない。

窒素肥料として硫酸アンモニウム(硫安)を長く施用してきた水田では、水稲の根が傷つく「秋落ち」が生じることがある[34]。その発生過程は次のとおりである。硫安を施用すると、稲はアンモニウムイオンを急速に吸収するので硫酸イオンは残留する。硫酸イオンは還元されて硫化水素と成る[35]。このガスは根を傷つけるが、通常は硫化鉄に固定されるため問題はない。この固定は、根に到達する前に土壌中の鉄と硫化水素が結合することによる。しかし、長期間の栽培で消費されてかつ、肥料で供給されずに水田土壌中の鉄が減少すると、硫化水素は捕捉されずに根に到達し得る。この対策として、窒素肥料には硫安ではなく、塩化アンモニウム尿素といった無硫酸肥料が推奨されている。

植物は土壌中の硫酸イオン(SO42-)の選択的な吸収により硫黄を摂取している[36][37]。この吸収は硫酸イオン輸送体により行われている。シロイヌナズナでは14種類が見つかっている。これらの輸送体は細胞内への取り込みを担い、硫酸イオン1分子を3分子のプロトンと共輸送する。導管柔細胞から導管への輸送に機能する排出型輸送体の存在が予想されているが、それはいまだ発見されていない。

植物の硫酸イオン輸送体の一部は、細胞膜内外の硫黄の状況を検知するセンサー機能を持つと推定されている。その根拠として、硫酸イオン輸送体のC末端親水性領域(STASドメイン [英: sulfate transporter and anti-sigma factor antagonist domain])は原核生物の高シグマ因子アンタゴニストと相同性がある[38][39]。また、動物のSTASドメインはGTPase促進因子(GAP)と結合する能力を有する[40]。GAPは細胞外からのシグナルを受信し、多くのシグナル伝達の系を構成する。植物の硫酸イオン輸送体も同様のシグナル受信能力を持つかははっきりしていない。

シロイヌナズナの硫酸イオン輸送体遺伝子をSultr [英: Sulfate Transporter] と呼ぶ。Sultr遺伝子はアミノ酸配列の相同性から5グループ(Sultr1 - 5)に分類されている[41]。このグループ分けは局在や硫酸輸送活性の特性の違いをも反映している。Sultr1は高親和型、Sultr2 - 4は低親和型であることが明らかとなっている。Sultr4は液胞に局在している。Sultr1 - 4はH+/硫酸イオン共輸送体である。CおよびN末端に長い親水性領域を持ち、親水性領域はSTASドメインである。一方、現在までに発見されている2種類のSultr5(Sultr5;1、Sultr5;2)はNおよびC末端にほとんど親水性領域を持たない。Sultr1 - 4と5は硫酸イオン輸送における役割が異なると推測されている。

吸収された硫黄は代謝され、上述の含硫化合物の合成に利用される。吸収後の硫酸イオンはまずATPスルフリラーゼによってATPと結合してアデノシンホスホ硫酸(APS)になる。APSには2つの運命がある。一つは、APSリン酸化酵素によってリン酸付加されて3'-ホスホアデノシン5'-ホスホ硫酸(PAPS)になることである。PAPSは硫黄脂質の基質となる。もう一つのAPSの運命は、APS還元酵素によるグルタチオン存在下での亜硫酸イオンへの還元である。亜硫酸イオンは亜硫酸還元酵素によって硫化物イオンになる。ここまでの過程で、硫酸イオン1モル当たり8個の電子は要求され、フェレドキシンによって供給される。硫化物イオンは、システイン合成酵素とセリンアセチル転移酵素の複合体によってO-アセチルセリンと合成され、システインに変換される。ATPスルフリラーゼやAPS還元酵素はシステインによってフィードバック阻害を受けている。システインはそのままでタンパク質の構成アミノ酸であり、また、メチオニンやグルタチオン合成の基質である。メチオニンの合成ではシスタチオニンγ合成酵素が、グルタチオンの合成ではγグルタミル-システイン合成酵素が鍵酵素である。

植物における硫黄の吸収と代謝の制御について詳述する。硫黄が欠乏すると硫酸イオン輸送体の遺伝子の転写翻訳はO-アセチルセリンによって活性化される。O-アセチルセリンは硫化物イオンとともにシステインへと合成されるが、硫黄不足では代謝されなくなり蓄積する。また、硫酸イオン輸送体の転写因子SLIM1も植物の硫黄欠乏への応答に重要な役割を果たす。逆に、抑制はシステインやグルタチオンによって行われる。

硫黄の代謝経路はカドミウムなどの有害な重金属によって活性化される。重金属の解毒に関わるファイトケラチンやメタロチオネインはシステインを多く含んでいるため重金属の汚染環境では硫黄がより多く要求されるためと考えられているが、重金属がどのように活性化させているかは明らかとなっていない。カドミウムに対して感受性のシロイヌナズナ変異株(cad1)では、グルタチオン合成の鍵酵素γグルタミル-システイン合成酵素は損なわれている[42][43][44]ポプラの葉でグルタチオンの蓄積が促進されると、カドミウムへの耐性が向上する[45]

メチオニン代謝の鍵酵素シスタチオニンγ合成酵素の発現量は、メチオニン濃度によってmRNAの蓄積量の制御という形で調節されている。シスタチオニンγ合成酵素のmRNAが翻訳される際に、メチオニンから合成されるS-アデノシルメチオニン濃度が高いと翻訳は停止する。mRNAは分解される。一時停止の機構は、合成途中のシスタチオニンγ合成酵素のN末端側のペプチドとS-アデノシルメチオニンとリボソームの相互作用である。

全植物にとっての微量要素

塩素

塩素は環境中に普遍的に存在する元素である。土壌中には約100 mg/kg含まれ、水溶性の塩化物イオンとして存在する。土壌粒子には吸着されにくく、水とともに移動する。日本では、塩化物イオンが豊富な海からの潮風で運ばれてくるため、作物の塩素欠乏はまずない。一方、海から遠く離れた大陸内部では欠乏が生じることがある。アメリカのグレートプレーンズには塩化物イオンを含む肥料によって小麦の収量が増加する地域がある[46]

各植物の塩素欠乏
植物 生育ステージや部位 症状が現れる濃度
サトウダイコン 地上部 700
葉身 880-1,800
葉柄 3,500-7,000
ジャガイモ 地上部 1,310
デュラム小麦 地上部 1,000
春小麦 出穂期の地上部 1,500
小麦、大麦 出穂期の地上部 1,200-1,400
パームヤシ 第14葉身 2,500
ココヤシ 葉身 6,000未満
第14葉身 2,500
オイルヤシ 葉身 6,000未満

塩素不足の植物の葉には異常が生じる;面積の減少、萎凋、縁部の巻き上がり、黄化、ブロンジング(青銅色への変色を伴う壊死)。また、根の生育は低下する。下表に各植物の塩素欠乏の症状および発症濃度を示す[47]。多くの塩素は塩化物イオンとして体内に存在し、遊離の無機アニオンとしての浸透圧調節やカチオンとのイオン平衡、膜電位の安定に必要とされる。これまで、130種類以上の塩素化合物が高等植物とシダから単離されている[48]

特に重要な塩素イオンの役割は気孔の開閉である。気孔はカリウムイオンの移動に伴う浸透圧変化によって開閉するが、カリウムイオンの対イオンとして利用されるのが塩化物イオンとリンゴ酸イオンである。塩化物イオンが多く利用できるほど、リンゴ酸イオンの必要量は減る。タマネギではこのことが重要であり、孔辺細胞葉緑体にデンプンが蓄積されないためリンゴ酸が不足し、このため塩化物イオンがないと気孔は開くことができない。また、閉じるときにも塩化物イオンは重要である。開口した孔辺細胞では、アブシジン酸などの気孔閉鎖シグナルがアニオンチャネルを活性化し、塩化物イオンとリンゴ酸を排出させる。これによって膜は脱分極してカリウムイオンを孔辺細胞から排出し、気孔は膨圧を失って閉鎖する。

細胞の伸長成長や分裂のきっかけは、細胞に塩化物イオンが流入することである。また、塩化物イオンが増加すると、先述の理由により有機酸イオンは植物成長により多く利用されるようになる。このため、塩素を含む肥料を与えると繊維が多くなるといわれている。このような肥料は綿やイグサなどに積極的に施用され、逆に、デンプン含有率を高めることが望ましいイモ類には用いられない。

光合成にも関わる。塩化物イオンは光化学系IIの必須因子であると考えられている。ラン藻の光化学系II複合体を構成するマンガン・カルシウムクラスターの近傍2か所に塩化物イオンが結合することが明らかとなっている[49]。さらに、V型ATPaseやアスパラギン合成酵素の活性調整に必要なことが示されている。

植物には、塩素と共有結合した有機化合物が存在する。エンドウやソラマメはオーキシンの一種4-クロロインドール-3-酢酸を持つ[50][51][52][53]。4-クロロインドール-3-酢酸は、塩素を持たないクロロインドール-3-酢酸と比べて10倍以上の成長促進活性を持つが、この強力さは、塩素を含有することで分解されにくくなったためと考えられている。他にもポリアセチレンチオフェンなどが塩素を含有する[48]

鉄イオンは下記の反応により生体での酸化還元に関わる。この反応では、鉄イオンは窒素、酸素、または硫黄原子と配位結合し、電子をその結合先の元素に渡す/から受け取る。

要購読契約)
  • ^ D. A. Hart; P. Kindel (Feb 1970). “Isolation and partial characterization of Apiogalacturonans from the cell wall of Lemna minor. The Biochemical journal 116 (4): 569–79. PMID 4314131. http://www.ncbi.nlm.nih.gov/pubmed/4314131. 
  • ^ P. J. Quillon (1966). “les incidences du bore sur l'état sanitaire des vérgers”. 97 97th Session of the Pomological Congress of the Pomological Society of France, Bourges: 135. 
  • ^ Vittal K. Yachandra; R.D. Guiles; Ann McDermott; R.David Britt; S.L. Dexheimer et. al. (2 July 1986). “The state of manganese in the photosynthetic apparatus: 4. Structure of the manganese complex in Photosystem II studied using EXAFS spectroscopy. The S1 state of the O2-evolving Photosystem II complex from spinach”. Biochimica et Biophysica Acta (BBA) - Bioenergetics 850 (2): 324–32. doi:10.1016/0005-2728(86)90188-X. http://www.sciencedirect.com/science/article/pii/000527288690188X. 
  • ^ C. Bowler; L. Slooten; S. Vandenbranden; R. De Rycke; J. Botterman et. al. (Jul 1991). “Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants”. The EMBO Journal 10 (7): 1723–32. PMID 2050109. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC452843/. 
  • ^ Page W. Morgan; Howard E. Joham; J. V. Amin (April 1966). “Effect of Manganese Toxicity on the Indoleacetic Acid Oxidase System of Cotton”. American Society of Plant Biologists 41 (4): 718-24. doi:10.1104/pp.41.4.718. http://www.plantphysiol.org/content/41/4/718.short. 
  • ^ a b L. Ja. Levanidov (1957). “MnがMn嗜好性植物で果たす生物学的役割”. チェリャビンスク教育大学紀要 3 (1): 267. 
  • ^ L. Ja. Levanidov (1961). “生物圏におけるMn移動の生化学的営力”. 「微量元素マンガン(Mn)とタンニンの生化学及び諸性質との関連」集: 4. 
  • ^ Yulia O. Korshunova; David Eide; W. Gregg Clark; Mary Lou Guerinot; Himadri B. Pakrasi (May 1999). “The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range”. Plant Molecular Biology 40 (1): 37-44. doi:10.1023/A:1026438615520. http://link.springer.com/article/10.1023/A:1026438615520. 
  • ^ Rémy Cailliatte; Adam Schikora; Jean-François Briat; Stéphane Mari; Catherine Curie (March 2010). “High-Affinity Manganese Uptake by the Metal Transporter NRAMP1 Is Essential for Arabidopsis Growth in Low Manganese Conditions”. American Society of Plant Biologists 22 (3): 904-17. doi:10.1105/tpc.109.073023. http://www.plantcell.org/content/22/3/904.short. 
  • ^ Viviane Lanquar; Magali Schnell Ramos; Françoise Lelièvre; Hélène Barbier-Brygoo; Anja Krieger-Liszkay (February 24, 2010). “Export of Vacuolar Manganese by AtNRAMP3 and AtNRAMP4 Is Required for Optimal Photosynthesis and Growth under Manganese Deficiency”. American Society of Plant Biologists 152 (4): 1986-99. doi:10.1104/pp.109.150946. http://www.plantphysiol.org/content/152/4/1986.short. 
  • ^ Kendal D. Hirschi; Victor D. Korenkov; Nathaniel L. Wilganowski; George J. Wagner (1 Sep 2000). “Expression of Arabidopsis CAX2 in Tobacco. Altered Metal Accumulation and Increased Manganese Tolerance”. American Society of Plant Physiologists 124 (1): 125-34. doi:10.1104/pp.124.1.125. http://www.plantphysiol.org/content/124/1/125.short. 
  • ^ Meng Yang; Wan Zhang; Yuanyuan Zhang; Kai Lv; Dujun Wang; Huaxia Dong et. al. (31 Des 2013). “OsNRAMP3 Is a Vascular Bundles-Specific Manganese Transporter That Is Responsible for Manganese Distribution in Rice”. PLoS One 8 (12). doi:10.1371/journal.pone.0083990. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3877151/. 
  • ^ a b c d e f g h i R. D. Reeves; J. M. Baker (2000). “Metal Accumulating Plants”. In I. Raskin; B. D. Ensley. Phytoremediation of Toxic Metals : Using Plants to Clean Up the Environment. USA: John Wiley & Sons, Inc., NJ. pp. 193-229 
  • ^ Abdul Razaque Memon; Michihiko Yatazawa (1982). “Chemical nature of manganese in the leaves of manganese accumulator plants”. Soil Science and Plant Nutrition 28: 401-12. doi:10.1080/00380768.1982.10433655. http://www.tandfonline.com/doi/pdf/10.1080/00380768.1982.10433655. 
  • ^ J. Proctor et. al. (1989). “Ecological Studies on Gunung Silam, a Small Ultrabasic Mountain in Sabah, Malaysia. II. Some Forest Processes”. Journal of Ecology 77 (2): 317-31. doi:10.2307/2260752. http://www.jstor.org/stable/2260752. 
  • ^ Sjaan D. Bidwell; Ian E. Woodrow; George N. Batianoff; Jens Sommer-Knudsen (29 July 2002). “Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia”. Functional Plant Biology 29 (7): 899-905. doi:10.1071/PP01192. http://www.publish.csiro.au/paper/PP01192. 
  • ^ S. G. Xue; Y. X. Chen; Roger D. Reeves; Alan J. M. Baker; Q. Lin; Denise R. Fernando (Oct 2004). “Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae)”. Environmental Pollution 131 (3): 393–9. doi:10.1016/j.envpol.2004.03.011. http://www.sciencedirect.com/science/article/pii/S0269749104001186. 
  • ^ 吉原利一 (2008). 
  • ^ a b 間藤徹 (2010). “第3章 植物の必須元素, 栄養元素 6. 亜鉛、ホウ素、ニッケル、塩素 1)亜鉛”. 植物栄養学 第2版. 文永堂出版. pp. 160-164 
  • ^ Nicole S. Pence; Paul B. Larsen; Stephen D. Ebbs; Mitch M. Lasat; Deborah L. D. Letham et. al. (November 29, 1999). “The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. PNAS 97 (9): 4956–60. doi:10.1073/pnas.97.9.4956. http://www.pnas.org/content/97/9/4956.short. 
  • ^ Ye-Tao Tang; Rong-Liang Qiu; Xiao-Wen Zeng; Rong-Rong Ying; Fang-Ming Yu; Xiao-Yong Zhou (April 2009). “Lead, zinc, cadmium hyperaccumulation and growth stimulation in Arabis paniculata Franch”. Environmental and Experimental Botany 66 (1): 126–34. doi:10.1016/j.envexpbot.2008.12.016. http://www.sciencedirect.com/science/article/pii/S0098847209000070. 
  • ^ R. J. DiDonato Jr.; L. A. Roberts; T. Sanderson; R. B. Eisley; E. L. Walker (2004). “Arabidopsis Yellow Stripe-Like2 (YSL2): a metal-regulated gene encoding a plasma membrane transporter of nicotianamine-metal complexes”. The Plant journal 39 (3): 403-14. PMID 15255869. http://www.ncbi.nlm.nih.gov/pubmed/15255869. 
  • ^ M. D. Harrison; C. E. Jones; C. T. Dameron (1999). “Copper chaperones: function, structure and copper-binding properties”. Journal of biological inorganic chemistry 4 (2): 145-53. PMID 10499084. http://www.ncbi.nlm.nih.gov/pubmed/10499084. 
  • ^ K. A. Markossian; B. I. Kurganov (2003). “Copper chaperones, intracellular copper trafficking proteins. Function, structure, and mechanism of action”. Biochemistry (Mosc) 68 (8): 827-37. PMID 12948382. http://www.ncbi.nlm.nih.gov/pubmed/12948382. 
  • ^ Bruce W. Wood; Charles C. Reilly; Andrew P. Nyczepir (Oct 2004). “Mouse-ear of Pecan: A Nickel Deficiency”. HortScience 39 (6): 1238–42. http://hortsci.ashspublications.org/content/39/6/1238.full.pdf. 
  • ^ W. M. Crooke (Apr 1956). “EFFECT OF SOIL REACTION ON UPTAKE OF NICKEL FROM A SERPENTINE SOIL”. Soil Science 81 (4): 269-76. http://journals.lww.com/soilsci/Citation/1956/04000/EFFECT_OF_SOIL_REACTION_ON_UPTAKE_OF_NICKEL_FROM_A.3.aspx. 
  • ^ E. Gajewska; M. Skłodowska (March 2008). “Differential biochemical responses of wheat shoots and roots to nickel stress: antioxidative reactions and proline accumulation”. Plant Growth Regulation 54 (2): 179–88. doi:10.1007/s10725-007-9240-9. http://link.springer.com/article/10.1007/s10725-007-9240-9. 
  • ^ Allen V. Barker; D. J. Pilbeam (2007). Handbook of plant nutrition. CRC Press. pp. 399–. ISBN 978-0-8247-5904-9. https://books.google.co.jp/books?id=5k0afN5UZ4IC&pg=PA399&redir_esc=y&hl=ja 2010年8月17日閲覧。 
  • ^ D. I. Arnon (1954). “Some recent advances in the study of essential micronutrients for green plants”. VIII. Congr. Int. Bot., Paris Sekt 11: 73-80. 
  • ^ R. J. Fido; C. S. Gundry; E. J. Hewitt; B. A. Notton (1977). “Ultrastructural Features of Molybdenum Deficiency and Whiptail of Cauliflower Leaves: Effects of Nitrogen Source and Tungsten Substitution for Molybdenum”. Australian Journal of Plant Physiology 4 (4): 675-89. doi:10.1071/PP9770675. http://www.publish.csiro.au/?paper=PP9770675. 
  • ^ 間藤徹 (2010). “第3章 植物の必須元素、栄養元素 7. ケイ素”. 植物栄養学 第2版. 文永堂出版. pp. 185-97 
  • ^ AgriPower. A Review of Silicon and Its Benefits for Plants. pp. 38–41. http://agripower.com.au/doc/A_review_of_Silicon_and_its_benefits_for_plants.pdf 2011年7月19日閲覧。. 
  • ^ E. Epstein (1999). “Silicon”. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 641-64. 
  • ^ a b c d Prakash, Dr. N. B. (2007). Evaluation of the calcium silicate as a source of silicon in aerobic and wet rice. University of Agricultural Science Bangalore. pp. 1. 
  • ^ Wanchun Sun; Jie Zhang; Qionghua Fan; Gaofeng Xue; Zhaojun Li; Yongchao Liang (16 May 2010). “Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier”. European Journal of Plant Pathology 128 (1): 39-49. doi:10.1007/s10658-010-9625-x. http://link.springer.com/article/10.1007/s10658-010-9625-x. 
  • ^ Wilfried Rémus-Borel; James G. Menzies; Richard R. Bélanger (March 2005). “Silicon induces antifungal compounds in powdery mildew-infected wheat”. Physiological and Molecular Plant Pathology 66 (3): 108–15. doi:10.1016/j.pmpp.2005.05.006. http://www.sciencedirect.com/science/article/pii/S0885576505001128. 
  • ^ Tsuyoshi Horiguchi (1988). “Mechanism of manganese toxicity and tolerance of plants IV. Effects of silicon on alleviation of manganese toxicity of rice plants”. Soil Science and Plant Nutrition 34 (1): 65-73. doi:10.1080/00380768.1988.10415580. http://www.tandfonline.com/doi/abs/10.1080/00380768.1988.10415580. 
  • ^ Tsuyoshi Horiguchi; S. Morita (1987). “Mechanism of manganese toxicity and tolerance of plants VI. Effect of silicon on alleviation of manganese toxicity of barley”. Soil Science and Plant Nutrition 10 (17): 2299-310. doi:10.1080/01904168709363778. http://www.tandfonline.com/doi/abs/10.1080/01904168709363778. 
  • ^ Kōzō Iwasakia; Akinori Matsumura (1999). “Effect of silicon on alleviation of manganese toxicity in pumpkin (Cucurbita moschata Duch cv. Shintosa)”. Soil Science and Plant Nutrition 45 (4): 909-20. doi:10.1080/00380768.1999.10414340. http://www.tandfonline.com/doi/abs/10.1080/00380768.1999.10414340. 
  • ^ “Silicon nutrition in plants”. Plant Health Care,Inc.: 1. (12 December 2000). http://excellerator.files.wordpress.com/2011/02/phc_silicon.pdf 2011年7月1日閲覧。. 
  • ^ Feng Ma, Jian; Yamaji, Naoki (12 July 2006). “Silicon uptake and accumulation in higher plants”. Trend in Plant Science. Abiotic stress series 11 (8): 1. http://www.aseanbiotechnology.info/Abstract/21019928.pdf 2011年7月1日閲覧。. 
  • ^ Feng Ma, Jian; Yamaji, Naoki (12 July 2006). “Silicon uptake and accumulation in higher plants”. Trend in Plant Science. Abiotic stress series 11 (8): 4–5. http://www.aseanbiotechnology.info/Abstract/21019928.pdf 2011年7月1日閲覧。. 
  • ^ AAPFCO Board of Directors 2006 Mid-Year Meeting”. Association of American Plant Food Control Officials. 2011年7月18日閲覧。
  • ^ Miranda, Stephen R. (2009年8月4日). “Silicon: Summary of Extraction Methods”. Harsco Minerals. 2011年7月18日閲覧。
  • ^ 菅野一野, 有村玄洋、「土壤中の植物性蛋白石(Plant opal)について(<特輯>プラントオパール) 『ペドロジスト』 1958年 2巻 2号 p.78-80, doi:10.18920/pedologist.2.2_78, NAID 110009427032
  • ^ 井上直人:古墳時代における松本の人里環境に関する民族植物学的研究 信州大学環境科学研究会 環境科学年報24:61-70(2002)
  • ^ P. F. Brownell; C. J. Crossland (May 1972). “The Requirement for Sodium as a Micronutrient by Species Having the C4 Dicarboxylic Photosynthetic Pathway”. Plant Physiology 49 (5): 794-7. doi:10.1104/pp.49.5.794. http://www.plantphysiol.org/content/49/5/794.short. 
  • ^ Daisaku Ohta; Junji Matsui; Töru Matoh; Eiichi Takahashi (1988). “Sodium Requirement of Monocotyledonous C4 Plants for Growth and Nitrate Reductase Activity”. Plant & Cell Physiology 29 (8): 1429-32. http://pcp.oxfordjournals.org/content/29/8/1429.short. 
  • ^ マルク・ヤーコヴレヴィチ・シュコーリニク; 監修:藤原彰夫 (1982年4月10日). “第8章 アルミニウム (Al) §1.Alの若干の植物に対する必須性”. 植物の生命と微量元素. 農山漁村文化協会. pp. 346-9 
  • ^ a b Dr. Julius Stocklasa; Verlag von Gustav Fischer (1922). “Über die Verbreitung des Aluminiums in der Natur und seine Bedeutung beim Bau- und Betriebsstoffwechsel der Pflanzen”. Angewandte chemie 35 (53): 352. doi:10.1002/ange.19220355309. 
  • ^ Ernst Kretzmann (1913). “Der Mikrochemische Nachweis und die Verbreitung des Aluminiums im Pflanzenreich”. Sitzber. K. Akad. Wiss. (Vienna) Nath-Naturwiss K1. 122 (2): 311. http://sammlungen.ub.uni-frankfurt.de/botanik/periodical/pageview/4436021. 
  • ^ K. Taubock (1942). “Über die Lebensnotwendigkeit des Aluminiums für Pterido-phyten”. Bot. Arch. 43: 291-295. 
  • ^ E. M. Chenery (1948). “Aluminum in plants and its relation to plant pigments”. Ann. Bot. 12 (2): 121-136. http://aob.oxfordjournals.org/content/12/2/121.extract. 
  • ^ Anna Louise Sommer (1926). “Studies concerning the essential nature of aluminium and silicon for plant growth”. University of California publications in agricultural sciences 5 (2). doi:10.5962/bhl.title.61309. 
  • ^ I. E. Znamenskij (1927). “コムギの乾生種と中生種に及ぼすAlの影響”. 大植物園会報 26 (6): 631. 
  • ^ M. Dixon; E. Webb (1961). “Enzymes”. IIL, Moscow. 
  • ^ W. D. McElroy; A. Nason (1954). “Mechanism of action of micronutrient elements in enzyme systems”. Annual Review of Plant Physiology 5: 1-30. doi:10.1146/annurev.pp.05.060154.000245. https://doi.org/10.1146/annurev.pp.05.060154.000245. 
  • ^ David E. Metzler; Esmond E. Snell (Feb 1952). “Some Transamination Reactions Involving Vitamin B61. Journal of the American Chemical Society 74 (4): 979-83. doi:10.1021/ja01124a033. http://pubs.acs.org/doi/abs/10.1021/ja01124a033. 
  • ^ David T. Clarkson (Jan 1966). “Effect of Aluminum on the Uptake and Metabolism of Phosphorus by Barley Seedlings”. Plant Physiology January 41 (1): 165-72. doi:10.1104/pp.41.1.165. http://www.plantphysiol.org/content/41/1/165.short. 
  • ^ Wong You Cheong; P. Y. Chan (Feb 1973). “Incorporation of P32 in phosphate esters of the sugar cane plant and the effect of Si and Al on the distribution of these esters”. Plant and Soil 38 (1): 113-23. doi:10.1007/BF00011221. http://link.springer.com/article/10.1007%2FBF00011221?LI=true. 
  • ^ A. T. Sestakov (1940). “エンドウとそのほかの作物の成長に及ぼすB, Mn, FおよびAlの影響”. レーニン記念全ソ農学アカデミー研究報告 5 (1): 22. 
  • ^ M. Ja. Skol’nik (1939). “植物の耐乾性と耐塩性並びに種子の化学的組成に及ぼす微量元素の影響”. ソビエト生物学 5-7: 218. 
  • ^ a b M. Ja. Skol’nik; V. P. Bozenko (1959). “Al, MoおよびCoが植物の耐乾性並びにそれを決定する若干の生理学的過程に及ぼす影響”. 「農業及び医学と微量元素の応用」集 全ソ微量元素協議会研究報告: 151. 
  • ^ M. Ja. Skol’nik; S. A. Abdurasitov; V. P. Boznko (1960). “トウモロコシの耐乾性に及ぼす微量元素の影響”. 植物生理学 7 (5): 571. 
  • ^ A. N. Gjul’ahmedov (1961). アゼルバイジャン綿作地域土壌の微量元素と綿作へのその肥効. 
  • ^ В. П. Боженко(V. P. Bozenko) (1968). “Действие алюминия и кобальта на содержание нуклеиновых кислот и активность рибонуклеазы в точках роста подсолнечника при водном дефиците(水分欠乏とヒマワリ生長点の核酸含量及びリボヌクレアーゼ活性に対するAlとCoの作用)”. Физиол. Раст(植物生理学) 15 (1): 116. 
  • ^ В. П. Боженко(V. P. Bozenko); М. Я. Школьник(M. Ja. Skol’nik) (1963). “Влияние алюминия, молибдена и кобальта на засухоустойчивость и азотистый обмен в условиях нормального и недостаточного водоснабжения(耐乾性に及ぼすAl, Co及びMoの影響並びに給水条件の良否とN代謝)”. 「植物の水分レジームと物質代謝および生産性との関連」集: 175. 
  • ^ a b Sam F. Trelease; Helen M. Trelease (May 1938). “Selenium as a Stimulating and Possibly Essential Element for Indicator Plants”. American Journal of Botany 25 (5): 372-80. http://www.jstor.org/stable/2436763. 
  • ^ Irene Rosenfeld; O. A. Beath (1964). “Selenium Geobotany”. Biochemistry. 
  • ^ T. C. Broyer; C. M. Johnson; R. P. Huston (Feb 1972). “Selenium and nutrition of Astragalus II. Ionic sorption interactions among selenium, phosphate, and the macro-and micronutrient cations”. Plant and Soil 36 (1): 651-69. doi:10.1007/BF01373514. http://www.jstor.org/stable/42932239. 
  • ^ K. T. Williams (1938). “Selenium in Soils”. Yearbook of agriculture: 830-4. http://naldc.nal.usda.gov/naldc/download.xhtml?id=IND43893630&content=PDF. 
  • ^ E. V. Bobko; N. P. Sendrenkova (1945). “植物の発育に及ぼす亜セレン酸とセレン酸の影響について”. ソ連科学アカデミー学術報告 46 (3): 122. 
  • ^ J. T. Miller; H. G. Byers (1937). “Selenium in plants in relation to its occurrence in soils”. Journal of Agricultural Research 55: 59-68. http://www.cabdirect.org/abstracts/19371402935.html;jsessionid=C5244DECE2B4BBBA65CFAFE75156A0E8. 
  • ^ Sam F. Trelease; August A. Di Somma (Nov 1944). “Selenium accumulation by corn as influenced by plant extracts”. American Journal of Botany 31 (9): 544-50. http://www.jstor.org/stable/2437376. 
  • ^ Edgar Page Painter (1941). “The Chemistry and Toxicity of Selenium Compounds, with Special Reference to the Selenium Problem”. Chemical Reviews 28 (2): 179–213. doi:10.1021/cr60090a001. http://pubs.acs.org/doi/abs/10.1021/cr60090a001. 
  • ^ Fulvio Ursini; Alberto Bindoli (Jul-Sep 1987). “The role of selenium peroxidases in the protection against oxidative damage of membranes”. Chemistry and Physics of Lipids 44 (2-4): 255-76. doi:10.1016/0009-3084(87)90053-3. http://www.sciencedirect.com/science/article/pii/0009308487900533. 
  • ^ a b A. P. Vinogradov (1953). “The elementary chemical composition of marine organisms”. Memoir / Sears Foundation for Marine Research 11: 647. http://library.wur.nl/WebQuery/clc/926763. 
  • ^ a b J. L. Mero (1965). The mineral resources of the sea. Elsevier. ASIN B0000CMHJ1 
  • ^ a b c d T. F. Borovik-Romanova (1969). The content of lithium in plants(Lithium distribution in soils and plants). pp. 675-82. 
  • ^ a b А. П. Виноградов (1957). “Геохимия редких и рассеянных элементов в почвах”. АН СССР. 
  • ^ L. A. Ezdakova (1964). “Lithium in plants”. Botanicheskii Zhurnal 49: 1798–800. 
  • ^ a b c d e Л. А. Геохимическая (1973). Геохимическая экология растений бассейна реки Зеравшан в связи с различным содержанием лития в среде. Автореф. pp. 48. 
  • ^ a b M. A. Ris; L. A. Ezdakova (1960). “クコ(Lycium ruthenicum)の化学的生態学に関する問題について”. ソ連科学アカデミー生物地球科学研究室研究報告 11: 246. 
  • ^ William Orrin Robinson; Louis Adrian Steinkoenig; Carl Frederick Miller (1917). “The relation of some of the rarer elements in soils and plants”. US Department of Agriculture 600. 
  • ^ D. Bertrand (1949). Bulletin de la Société de Chimie Biologique 31: 1. 
  • ^ D. Bertrand (1952). Comptes Rendus de l'Académie des Sciences 234: 21. 
  • ^ Mark Yakolevich Shkol'nik (1974). Shkol’nik, M. Ya. "Mikroelementy v zhizni rastenii (Microelements in Plant Life). http://agris.fao.org/agris-search/search.do?recordID=US201300580723. 
  • ^ M. Ya. Lovkova; S. M. Sokolova; G. N. Buzuk (Feb 2007). “Lithium-concentrating plant species and their pharmaceutical usage”. Doklady Biological Sciences 412 (1): 64-6. doi:10.1134/S0012496607010218. https://link.springer.com/article/10.1134%2FS0012496607010218. 
  • ^ Herbert Mayer (1930). “Untersuchungen über die chlorophyllase”. Zeitschrift für wissenschaftliche Biologie. Abteilung E. Planta 11 (2): 294-330. http://www.jstor.org/stable/23840923. 
  • ^ Л П Головина (1964). “Содержание лития в почвах Украины и влияние его как микроэлемента на урожай и сахаристость сахарной свеклы. Автореф”. Автореф. дисканд с -х. наук. Киев: 24. 
  • ^ L. A. Ezdakova (1963). “タバコの葉の光合成と呼吸に及ぼすLi追肥の影響”. 高等専門学校学術報告 2: 137. 
  • ^ P. A. Vlasjuk; I. A. Gaava; V. A. Černyšenko (1968). “Mn, B, Mo, Liがそれぞれ単独でまたは組み合わさって植物の生理・生化学的過程に及ぼす影響”. 「農業及び医学と微量元素」集。第5回全ソ微量元素協議会学術報告: 484. 
  • ^ L. A. Ezdakova; N. K. Osmolovskaja (1964). “Liの追肥を受けたタバコの葉の各種形態のNと水溶性炭水化物の含量”. 高等専門学校学術報告, 生物化学 3: 135. 
  • ^ A. M. Grinčenko; L. P. Golovina (1962). “ウクライナ土壌のLi含量とそれがテンサイの収量と品質に及ぼす影響”. 「微量元素と土壌の自然放射能」. 
  • ^ L. A. Ezdakova (1961). “若干のナス科植物の水分レジームに及ぼすLiの影響”. A・ナボイ記念サマルカンド国立総合大学研究報告, 新シリーズ 103: 73. 
  • ^ N. I. Vavilov (1918). “IMMUNITY OF PLANTS TO INFECTIOUS DISEASES”. Ann. Acad. Agron. Petrov.: 221-239. 
  • ^ Barbara Haccius (1956). Über die Beeinflussung der Morphogenese pflanzlicher Embryonen durch Lithium-Ionen. 
  • ^ Giuliano Puccini (1957). “Stimulant action of lithium salts on the flower production of the perpetual carnation of the Riviera”. Annali della Sperimentatione Agrarta 11 (1): 41-63. 
  • ^ Roger W. Turkington (Mar 1968). “Cation inhibition of DNA synthesis in mammary epithelial cells in vitro”. Experientia 24 (3): 226-8. doi:10.1007/BF02152783. http://link.springer.com/article/10.1007/BF02152783. 
  • ^ M. Volm; V. Schwartz; K. Wayss (May 1970). “Effect of lithium and thiocyanate on the nucleic acid-synthesis of tetrahymena”. Naturwissenschaften 57 (5): 250. doi:10.1007/BF01010282. http://link.springer.com/article/10.1007%2FBF01010282?LI=true. 
  • ^ V. M. Korovina; N. N. Dampel (1945). “タマネギの根の分裂組織を構成する細胞の有糸分裂に及ぼすLi塩類の影響”. 海軍医科大学研究報告 5 (1): 1. 
  • ^ Benjamin Wolf; S. J. Cesare (30 May 1952). “Response of Field-grown Peaches to Strontium Sprays”. Science 115 (2996): 606-7. doi:10.1126/science.115.2996.606. http://science.sciencemag.org/content/115/2996/606. 
  • ^ Walter Mevius (1927). “Kalzium ion und Wurzelwachstum”. Wiss Bott 66: 183. 
  • ^ Thomas Walsh (1944/1945). “The Effect on Plant Growth of Substituting Strontium for Calcium in Acid Soils”. Proceedings of the Royal Irish Academy 50: 287-94. http://www.jstor.org/stable/20490840. 
  • ^ William H. Queen; Harvey W. Fleming; Joseph C. O'Kelley (July 1963). “Effects on Zea mays Seedlings of a Strontium Replacement for Calcium in Nutrient Media”. Plant Physiology 38 (4): 410-3. http://www.jstor.org/stable/4260090. 
  • ^ Beverley A. Humphrey; J. M. Vincent (8 Oct 1966). “Strontium as a Substituted Structural Element in Cell Walls of Rhizobium. Nature 212: 212-3. doi:10.1038/212212a0. http://www.nature.com/nature/journal/v212/n5058/abs/212212a0.html. 
  • ^ F. Borovik-Romanova (1946). “Rubidium in the biosphere”. Trudy Biogeokhim. Lab. Akad. Nauk SSSR 8: 145-80. 
  • ^ a b Adel M. El-Sheikh1; Albert Ulrich (Nov 1970). “Interactions of rubidium, sodium, and potassium on the nutrition of sugar beet plants”. Plant Physiology 46 (5): 645-9. doi:10.1104/pp.46.5.645. http://www.plantphysiol.org/content/46/5/645.short. 
  • ^ F. J. Richards (Apr 1941). “Physiological Studies in Plant Nutrition: XI. The Effect on Growth of Rubidium with low Potassium Supply, and Modification of this Effect by other Nutrients: Part I. The Effect on Total Dry Weight”. Annals of Botany 5 (18): 263-96. http://www.jstor.org/stable/42906829. 
  • ^ F. J. Richards (Oct 1944). “Physiological Studies in Plant Nutrition: XI. The Effect on Growth of Rubidium with low Potassium Supply, and Modification of this Effect by other Nutrients: Part II. The Effect on Dry-Weight Distribution, Net Assimilation Rate, Tillering, Fertility, etc.”. Annals of Botany 8 (32): 323-56. http://www.jstor.org/stable/42906939. 
  • ^ Keith R. West; Michael G. Pitman (17 June 1967). “Rubidium as a Tracer for Potassium in the Marine Algae Ulva lactuca L. and Chaetomorpha darwinii (Hooker) Kuetzing”. Nature 214: 1262-3. doi:10.1038/2141262a0. http://www.nature.com/nature/journal/v214/n5094/abs/2141262a0.html. 
  • ^ F. J. Richards; E. Berner Jr. (1954). “Physiological Studies in Plant Nutrition XVII. A General Survey of the Free Amino-acids of Barley Leaves as affected by Mineral Nutrition, with Special Reference to Potassium Supply”. Annals of Botany 18 (1): 15-33. https://doi.org/10.1093/oxfordjournals.aob.a083379.  (要購読契約)
  • ^ Gene Miller; Harold J. Evans (Jul 1957). “The influence of salts on pyruvate kinase from tissues of higher plants”. Plant Physiology 32 (4): 346–54. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC540932/. 
  • ^ Robert E. McCollum; Richard H. Hageman; Edward H. Tyner (Dec 1958). “Influence of potassium on pyruvic kinase from plant tissue”. Soil Science 86 (6): 324-31. https://journals.lww.com/soilsci/Citation/1958/12000/Influence_of_Potassium_on_Pyruvic_Kinase_From.7.aspx.  (要購読契約)
  • ^ E. Latzko; D. Claus (Jan 1958). “Aerobe Phosphorylierung unter dem Einfluß von K+, Na+, Rb+ und NH4+. Naturwissenschaften 45 (3): 59-60. doi:10.1007/BF00638613. http://link.springer.com/article/10.1007%2FBF00638613?LI=true. 
  • ^ A. J. Hiatt; Harold J. Evans (Sep 1960). “Influence of certain cations on activity of acetic thiokinase from spinach leaves”. Plant Physiology 35 (5): 673–7. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC406023/. 
  • ^ P. A. Vlasjuk; E. A. Rubanjuk; M. S. Galinskaja; O. F. Cerkavskij (1970). “播種前にCs、NiおよびRbを富化することが秋播きコムギとトウモロコシの発芽種子の代謝に及ぼす影響”. 栽培植物の生理学と生化学 2 (2): 160. 
  • ^ A. P. Vinogradov (1965). “微量元素と科学の課題”. 農芸化学 8: 20-. 
  • ^ a b P. Maze (1915). “Détermination des éléments minéraux rares nécessaires au développement du maïs”. Comptes Rendus Hebdomadaires des Séances de L’académie des Sciences 160: 211-4. 
  • ^ F. Traetta-Mosca (1913). “Titanium and the rare metals in the ash of the leaves of Kentucky tobacco cultivated in Italy”. Gazzetta Chimica Italiana 43: 437-40. 
  • ^ A. Itano; Matsura (1940). “Versuchungen über Knöllchenbakterien Einfluss des Aschengehaltes der Knöllchen auf das Wachstum der Knöllchenbakterien mit besonderer Beziehung zu den Ti-tansalzen”. Vgl. S. Gerieve Prakt. Blatter f. Pflanzenbau u. Pflanzenschutz: 18-. 
  • ^ Th. Baum (1939). “Zum Wirkung von Titanverbindungen auf Pflanzen”. Disertction T- H. Mínchen. 
  • ^ a b A. S. Gordienko; A. Iu. Chebotarev; I. K. Kurdish (2009). “Influence of titanium dioxide on growth of Azotobacter vinelandii IMV V-7076”. Mikrobiolohichnyi Zhurnal 71 (3): 19-25. PMID 19938601. http://europepmc.org/abstract/med/19938601. 
  • ^ 久馬一剛 (2010). “3. 土はどうやってできたのだろう”. 土の科学: いのちを育むパワーの秘密. PHP研究所. ISBN 4569779611 
  • ^ 間藤徹 (2010). “5. 無機栄養”. 植物栄養学 第2版. 文永堂出版. pp. 3 
  • ^ 小野信一 (2008). “リービッヒの無機栄養説と土壌肥料学”. 情報:農業と環境 No.102. http://www.niaes.affrc.go.jp/magazine/102/mgzn10211.html. 
  • ^ G. Bertrand; M. Rosenblatt (1921). “Sur la présence générale du manganèse dans le règne végétal”. Comptes Rendus de l'Académie des Sciences 173: 333-6. 
  • ^ G. Bertrand (1897). “On the oxidizing action of manganese salts on the chemical composition of oxydases”. Comptes Rendus 124: 1355-8. 
  • ^ C. F. Buchholtz (1816). “Chemische Untersuchung der Vanillenschoten (Siliqua vanillae)”. Repertorium Pharm 2: 253. 
  • ^ A. L. Sommer (Apr 1931). “Copper as an essential for plant growth”. Plant Physiology 6 (2): 339–45. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC440099/. 
  • ^ U. J. Raulin (1869). “Chemical studies on vegetation”. Annales des Sciences Naturelles; Botanique 11: 93-9. 
  • ^ Anna L. Sommer (Apr 1928). “Further evidence of the essential nature of zinc for the growth of higher green plants”. Plant Physiology 3 (2): 217–21. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC440002/. 
  • ^ J. E. Ambler; J. C. Brown (May 11 1968). “Cause of Differential Susceptibility to Zinc Deficiency in Two Varieties of Navy Beans (Phaseolus vulgaris L.)”. Agronomy Journal 61 (1): 41-3. doi:10.2134/agronj1969.00021962006100010013x. https://dl.sciencesocieties.org/publications/aj/abstracts/61/1/AJ0610010041?access=0&view=pdf. 
  • ^ M. Ja. シュコーリニク (10 Apr 1982). 植物の生命と微量元素. pp. 326–33 
  • ^ Katherine Warington (1923). “The effect of boric acid and borax on the broad bean and certain other plants”. Annals of Botany 37: 629-72. http://aob.oxfordjournals.org/content/os-37/4/629.full.pdf. 
  • ^ Hening Hu; Patrick H. Brown; John M. Labavitch (1996). “Species variability in boron requirement is correlated with cell wall pectin”. Journal of Experimental Botany 47 (2): 227-32. doi:10.1093/jxb/47.2.227. http://jxb.oxfordjournals.org/content/47/2/227.short. 
  • ^ a b F. W. Smith; P. M. Ealing; M. J. Hawkesford; D. T. Clarkson (26 Sep 1995). “Plant members of a family of sulfate transporters reveal functional subtypes”. Proceedings of the National Academy of Sciences 92 (20): 9373-7. http://www.pnas.org/content/92/20/9373.short. 
  • ^ Frank W. Smith; Malcolm J. Hawkesford; Ian M. Prosser; David T. Clarkson (Nov 1995). “Isolation of a cDNA from Saccharomyces cerevisiae that encodes a high affinity sulphate transporter at the plasma membrane”. Molecular and General Genetics 246 (7): 709-15. doi:10.1007/BF00290402. http://link.springer.com/article/10.1007/BF00290402. 
  • ^ Hideki Takahashi; Akiko Watanabe-Takahashi; Frank W. Smith; Mechteld Blake-Kalff; Malcolm J. Hawkesford; Kazuki Saito (July 2000). “The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. the Plant Journal 23 (2): 171-82. doi:10.1046/j.1365-313x.2000.00768.x. http://onlinelibrary.wiley.com/doi/10.1046/j.1365-313x.2000.00768.x/full. 

  • 「栄養素 (植物)」の例文・使い方・用例・文例

    Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


    英和和英テキスト翻訳>> Weblio翻訳
    英語⇒日本語日本語⇒英語
      

    辞書ショートカット

    すべての辞書の索引

    「栄養素 (植物)」の関連用語









    9
    70% |||||


    栄養素 (植物)のお隣キーワード
    検索ランキング

       

    英語⇒日本語
    日本語⇒英語
       



    栄養素 (植物)のページの著作権
    Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

       
    ウィキペディアウィキペディア
    All text is available under the terms of the GNU Free Documentation License.
    この記事は、ウィキペディアの栄養素 (植物) (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
    Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
     Creative Commons Attribution (CC-BY) 2.0 France.
    この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
    浜島書店 Catch a Wave
    Copyright © 1995-2024 Hamajima Shoten, Publishers. All rights reserved.
    株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
    Copyright © Benesse Holdings, Inc. All rights reserved.
    研究社研究社
    Copyright (c) 1995-2024 Kenkyusha Co., Ltd. All rights reserved.
    日本語WordNet日本語WordNet
    日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
    WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
    日外アソシエーツ株式会社日外アソシエーツ株式会社
    Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
    「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
    EDRDGEDRDG
    This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

    ©2024 GRAS Group, Inc.RSS