衛星測位システム 精度阻害要因

衛星測位システム

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/12/19 11:57 UTC 版)

精度阻害要因

測位の精度阻害の程度は、各阻害要因からの誤差の総和で決まってくる。誤差の統計的性質は系統誤差とランダム誤差とに分類される。ここでは単独測位の場合の各阻害要因を取り上げる。

衛星原子時計誤差

信号基準である衛星時計の時刻ずれ(バイアス)は、その中長期的変動値の情報が航法衛星から送信され、利用者側で補正計算を施す。しかし、このバイアス補正値には多少の誤差が含まれ、また短期的変動については補正されない。最終的には、ほぼ確実に5 ns(距離に換算して1.5 m)以内にバイアスは補正される。

衛星天体暦誤差

航法衛星から送信される、その天体暦(軌道座標)の情報には、多少の誤差が含まれる。これの誤差は視線方向成分がほぼ1.5m以下となる。


電離圏遅延

大気屈折率は大気中を伝播する衛星電波信号の伝播遅延を生じ、これを大気遅延と呼んでいる。衛星航法システムではおおよその推定値を利用者へ伝送し、利用者はこれを用いて大気遅延の影響を取り除く測位計算の処理をおこなう。また大気遅延の大きさは衛星視線方向が低仰角になるほど増大するが、この遅延量は通常は、天頂方向遅延に仰角依存性係数(傾斜係数)を乗じた形を用いてモデル化される。大気遅延の推定誤差は測位座標へ誤差を生じさせる。

この大気の屈折率を決める大きい要因は、大気を構成する気体中の電離電子の量である総電子数 (total electron content, TEC) であり、電離電子は主に電離圏及びプラズマ圏に存在する。電離電子に起因する伝播遅延を指して習慣上、電離圏遅延と呼んでいる(天頂方向ではおよそ2mから20mに相当する遅延となる)。TECは太陽黒点活動、季節変化、日変化、高度と位置による変化があり、これを高精度に推定することは容易ではない[注 10]。GPSで利用者へ伝送される電離圏天頂遅延値の推測値に含まれる誤差は距離に換算しておおよそ1.5 m以下であるが、これを超えることもある。電離圏遅延の傾斜係数は仰角30度ではおよそ1.7、仰角20度ではおよそ2.1の値となる。

対流圏遅延

中性大気とは大気中の電離電子を排除して考えた大気成分を言い、主に対流圏及び成層圏に存在する。この中性大気成分も屈折率を生ずる。中性大気に起因する衛星電波信号の伝播遅延を指して習慣上、対流圏遅延と呼んでいる(天頂方向ではおよそ2mに相当する伝播遅延となる)。

中性大気はさらに気体としての水(水蒸気)とそれ以外の気体成分とへ二分でき、湿潤成分及び乾燥成分と呼ばれる[注 11]。対流圏遅延のうち湿潤成分による伝播遅延はおよそ10%以下であり(湿度:水蒸気分圧の寄与)、すなわち天頂方向遅延は0mから0.2mの範囲にある(したがって±0.1mの誤差)。利用者受信機においては乾燥成分に比べ湿潤成分の屈折率を高精度に推定することは容易ではなく、測位座標へ誤差を生じさせる[注 12]。これらの対流圏遅延の傾斜係数は仰角30度ではおよそ2.0、仰角20度ではおよそ2.9の値となる。

マルチパス

航法信号は衛星のアンテナから受信機のアンテナまで直接到達することを前提に衛星航法システムは構築されているが、電波が地面や建物のような面に反射してから受信機のアンテナに到達するマルチパスが起きると、測定精度は大きく低下する。カーナビのような移動体での大きな誤差の主な原因として考えられているが、個別に対処するだけであり容易に解決できない。マルチパスによる誤差はランダム誤差の性質を持つ。受信機及びアンテナの作りによっては、誤差の大きさは数十mを超える場合がある。

測量用に用いられる受信機及びアンテナではマルチパス誤差軽減の技術が進んでおり、ほぼ数m以下に軽減されている。しかし普及型の受信機及びアンテナではこのような技術の採用は困難とされている。

COCOM limits

対共産圏輸出統制委員会(COCOM)規制の名残で高度18,000 m (59,000 ft)以上、速度1,900km/h以上では大陸間弾道ミサイルのような用途への搭載を防ぐために使用できない[17][18][19]

アンテナ位相中心の位置

受信アンテナの形状に応じてアンテナ平均位相中心が変わるため、フィールド研究のような精密な測量を行う場合には、キャリブレーションが必要になる。




[ヘルプ]

注釈

  1. ^ 2011年平成23年)4月からは国土地理院では全地球型のシステム(全地球航法衛星システム)を、GNSSと呼称することになった。
  2. ^ よく誤解されるが、GPSはあくまでも衛星測位システムの中の1つ(固有名詞)であり、衛星測位システムそのものを指すものではない。
  3. ^ GPSは地上約20,200 kmのほぼ円軌道をとる。傾斜角55度の6つの軌道に4機ずつの合計24機に加えて、予備に何機かを軌道上で常に用意している。周期はおよそ12時間である。GLONASSは19,100 kmの高度を120度ごとの傾斜角64.8度3つの円軌道に45度異なる8機、合計24機の衛星を配置する予定である。周期は11時間15分44秒である。ガリレオは傾斜角65度で長半径29,601.297 kmの3つのMEO (Medium Earth Orbit) 軌道内に各9機の衛星が40度ごとに離れて置かれ、合計27機が予備3機と共に置かれる。予備衛星も各軌道で1機を持ち、およそ1週間で移動を完了する。周期は14時間4分45秒17である。
  4. ^ 受信機測定値である信号送信時刻は、そのままの形よりも、「受信機で仮り決めした受信時刻」=「伝播時間」という形で表現されることが多い。「この伝播時間×真空中の光速度」は擬似距離と呼ばれる。受信・測定時刻については受信した複数の航法衛星に対して同一時刻で行われる。この受信時刻は、GPS時に同期させる場合が多い。例えば、測定レートが 1 Hz の受信機では、GPS時の正秒時との差が±1 ms 以内になるよう受信機内部で調整される。
  5. ^ ただし送信時刻の測定値には、航法衛星での航法信号の生成の時刻ずれ(つまり信号基準である衛星時計のずれ、バイアス)が元来含まれている。そこで正確な送信時刻を得るために、このバイアス値の情報を航法衛星から受信し利用者側で差し引くことで、ほぼ確実に5 ns(距離に換算して1.5 m)以内にバイアス誤差が除去された送信時刻を得ることができる。
  6. ^ 航法衛星の天体暦(軌道)、衛星時計のバイアスは航法メッセージ信号を復調して得る。
  7. ^ 民間企業も採算の見込みが立たないと手を引いたため、本格運用開始の共同事業体の体制がととのわず、目処が立たない状況となっていた。
  8. ^ このことは、航法衛星システムの維持がいかに財政的な裏付けを必要とする困難な事業であるかを物語っている。
  9. ^ Cバンドは4-8GHz、Sバンドは2-4GHz、Lバンドは1-2GHzである。
  10. ^ 日本では長年の電離層観測による「臨界プラズマ周波数値」によって、TECとの相関を利用した高い精度の補正値が得られており、他国も同様の研究を行っている。
  11. ^ 正確には、慣習上、乾燥成分と呼ぶものは大気分子全てを非分極気体分子と見なした屈折率寄与の和(静水圧項)を指す。気体としての水(水蒸気)からの屈折率寄与については非分極項と分極項(すなわち非静水圧項)とに分け、後者を指して慣習上、湿潤成分と呼ぶ。
  12. ^ 中性大気の屈折率は15GHzまでの周波数帯に対して一定値を示し、衛星航法に使用される電波帯では周波数差から屈折率推定を行うことはできない。
  13. ^ 衛星航法システムの衛星が使用する搬送波の周波数帯は、国際電気通信連合 (ITU) の割り当てを受けているが、複数のシステム同士は2010年現在、互いの周波数は離散的に配置されている。
  14. ^ 従来のGPSだけが存在していた時代ではSAによる測位精度操作に大きな意味があったが、複数のシステムが並立するようになれば相対的に1つのシステムごとのSAの価値は希薄化する。

出典

  1. ^ [1] 2011年度施行改正公共測量作業規程の準則(基準点測量)解説、アイサンテクノロジー
  2. ^ [2] 平成 22 年度 -公共測量- 作業規程の準則の一部改正 第2編 基準点測量 新旧対照表、国土地理院、赤字で示されている箇所。
  3. ^ a b c d e f ヴェレンホーフ、リヒテンエッガ、ヴァスレ著、西修二郎訳、『GNSSのすべて』、古今書院、2010年2月10日初版第1刷発行、ISBN9784772220088
  4. ^ en:GNSS_positioning_calculation#The_solution_illustrated
  5. ^ “Boost to Galileo sat-nav system”. BBC News. (2006年8月25日). http://news.bbc.co.uk/1/hi/sci/tech/5286200.stm 2008年6月10日閲覧。 
  6. ^ ついに運用が始まった欧州版GPS「ガリレオ」
  7. ^ Beidou satellite navigation system to cover whole world in 2020
  8. ^ China to send third navigation satellite into orbit
  9. ^ DORIS information page
  10. ^ April 15 launch to give India its own GPS
  11. ^ India to develop its own version of GPS
  12. ^ Launch of first satellite for Indian Regional Navigation Satellite system next year
  13. ^ India to build a constellation of 7 navigation satellites by 2012
  14. ^ 宇宙基本計画(平成28年4月1日閣議決定) (PDF)”. 内閣府宇宙基本計画. 宇宙開発戦略本部. p. 17 (2016年4月1日). 2016年12月20日閲覧。
  15. ^ 宇宙基本計画工程表(平成27年度改訂版) (PDF)”. 内閣府宇宙基本計画. 宇宙開発戦略本部. p. 3 (2015年12月8日). 2016年12月20日閲覧。
  16. ^ http://www.navipedia.net/index.php/Other_SBAS
  17. ^ GPS without limits
  18. ^ Why are there altitude and velocity limits for GPS equipment?
  19. ^ COCOM Limits
  20. ^ 例えばBroadcomは、http://ja.broadcom.com/products/GPS/GPS-Silicon-Solutions/BCM47511






英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

全て

ビジネス

業界用語

コンピュータ

電車

自動車・バイク

工学

建築・不動産

学問

文化

生活

ヘルスケア

趣味

スポーツ

生物

食品

人名

方言

辞書・百科事典

すべての辞書の索引

「衛星測位システム」の関連用語

衛星測位システムのお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング

画像から探す

デザインQR

Opera Unite

Wedge Touch Mouse

Withings Steel HR

ムーヴバンド3

Xperia X Performance

多重分岐

Xperia Z2 SO-03F





衛星測位システムのページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの衛星測位システム (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2018 Weblio RSS