核安定性と同位体
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/09 09:09 UTC 版)
モスコビウムは、コペルニシウム112とフレロビウム114を中心とする安定の島の中にあると予測されている。しかしこのような島の存在の理由はまだよく分かっていない。高い融合障壁が予測されるため、この島の内部の原子核は、電子捕獲やベータ崩壊もするが、もっぱらアルファ崩壊により崩壊する。モスコビウムの既知の同位体は、実際には安定の島に入るのに十分な中性子を持っていないが、一般に重い同位体が長い寿命を持ち、安定の島に近づいているように見える。 仮想的な同位体291Mcは、既知で最も重い同位体290Mcよりも1つだけ中性子が多いものであり、興味深い性質を持つ。295Tsの崩壊生成物として生成すると考えられるが、249Bk(48Ca,2n)295Tsの反応でも作られる。計算により、アルファ崩壊の他に電子捕獲や陽電子放出による崩壊モードもかなりあると考えられ、数秒の比較的長い半減期を持つ。これにより291Fl、291Nhが作られ、最終的に安定の島内にあり約1200年の半減期を持つ291Cnとなる。これが、現在の技術を用いて安定の島に辿り着く最も可能性の高い方法であると考えられている。ありうる障害は、295Tsの生成反応の反応断面積が低く、またベータ安定性の線近くの超重元素の崩壊特性がまだほとんど調べられていないことである。 安定の島の原子核を合成する他の方法としては、重い原子核の準核分裂(部分核融合とそれに続く核分裂)である。そのような原子核は、カルシウム40、スズ132、鉛208、ビスマス209等の魔法数の2倍やそれに近い断片を放出して分裂する傾向にある。近年、ウランやキュリウム等のアクチノイド原子核の衝突による多核子移行反を安定の島にある中性子の多い超重原子核の合成に使うことができることが示されたが、より軽い元素であるノーベリウムやシーボーギウムの合成に使うのにより便利である。安定の島付近の同位体を合成するための最後の可能性は、制御された核爆発によって、258-260Fm及び質量数275(原子番号104-108)の位置にある安定性ギャップを迂するのに十分なエネルギーを持つ中性子束を作りだし、自然界で最初にアクチノイド元素が作られたr過程を模倣することでラドン周辺の不安定性を迂回することである。そのような同位体のいくつか(特にコペルニシウム291や293)は天然でも合成されているが、崩壊が速すぎ(半減期数千年)、生成が少量すぎる(鉛の10-12)ので、宇宙線を除いては、原始核種として検出されないだろうと考えられている。
※この「核安定性と同位体」の解説は、「モスコビウム」の解説の一部です。
「核安定性と同位体」を含む「モスコビウム」の記事については、「モスコビウム」の概要を参照ください。
核安定性と同位体
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/09/12 15:51 UTC 版)
周期表を支配する化学的周期性の物理的基礎は、各貴ガスの閉殻にある。閉殻構造はかなり安定しているため、電子がさらに新しい殻に入るにはより高いエネルギーを持つ必要がある。このため貴ガス(原子番号2、10、18、36、54、86、118)は不活性である。陽子と中性子もこれら自体が閉じた殻に配置することが知られ、特定の核子数の時に同じ効果が原子核に起こる。既知の魔法数は、陽子と中性子が2、8、20、28、50、82個の場合とされに中性子が126個の場合である。ヘリウム4、酸素16、カルシウム48、鉛208等の陽子数と中性子数がともに魔法数の原子核は「二重魔法数」と呼ばれ、崩壊に対して非常に安定である。このような原子核の安定性は、超重元素にとって非常に重要である。この安定性がなければ、狭い距離で原子核を繋ぎ留めていた強い力を陽子間に働く静電斥力が上回るため、110番元素(ダームスタチウム)になると、これらの半減期は数ナノ秒になってしまう。次の閉殻は安定の島の中心にあると考えられ、ここではアルファ崩壊や自発核分裂の半減期が再び長くなる。 当初、中性子の魔法数126からの類推で、次の陽子の殻は126番元素にあると考えられていた。1966年に発表された、周期表のこの領域のスピン軌道相互作用の新しい値はこれと矛盾し、次の陽子の殻は114番元素にあり、この領域の原子核は鉛208等の重い原子核と同等に自発核分裂に対して安定性があることが予測された。この領域の中性子の閉殻は184か196であり、298Flと310Flが二重魔法数原子核の候補となった。1972年の評価では、大きな安定の島の付近にある298Flの半減期は約1年であり、最も長い294Dsの半減期は、232Thに匹敵する1010年と予測された。21世紀になって112番から118番元素の最初の同位体が合成されると、合成された中性子を欠く同位体は核分裂に対して安定であることが発見された。2008年、これらの原子核の核分裂に対する安定性は扁平な原子核の形に由来するという仮説が出された。周期表上で扁平な原子核の領域の中心は、298Flであった。さらに、新しい理論モデルにより、2f7/2軌道(114番元素で閉殻)と2f5/2軌道(120番元素で閉殻)の陽子の間のエネルギーギャップは予測よりも小さく、114番元素は閉殻の安定な球形原子核とは言えないことが示された。次の二重魔法数原子核は306Ubb近辺であることが予測されているが、半減期が短く反応断面積が低いと予測され、その合成は難しい 。それにも関わらず、周期表のこの領域に安定の島があり、291Mcやそのアルファ崩壊やベータ崩壊の娘核等、その中心に近づくと、陽電子放出か電子捕獲によりさらに島の中心に近づいていくと考えられている。高い分裂障壁のため、この安定の島の中の原子核は、ほぼアルファ崩壊で、またはその他いくつか電子捕獲またはベータ崩壊により崩壊し、そのどちらも原子核は、島があると思われるベータ安定線に近づいていくことになる。島に近づくには電子捕獲が必要であるが、核図表のこの領域で電子捕獲が主な崩壊モードであるかどうかは分かっていない。 2000年から2004年の間にフリョロフ原子核反応研究所で、292Fl複合核の分裂の性質を研究するために、244Puに加速した48Caイオンを衝突させる実験が何度か行われた。複合核は、まだ殻に配列していない核子のゆるい結合である。内部構造を持たず、ターゲット原子核と発射原子核の衝突力のみで形を保っている。その結果は、このような原子核がどのようにして、主に40Ca、132Sn、208Pb、209Bi等の二重魔法数やそれに近い断片を放出して分裂するかを明らかにした。また、40Caと58Feを用いた際の分裂-分裂経路が似ていることが明らかとなり、将来的に58Feを発射原子核とする可能性が示された。さらに、中性子の多いフレロビウム同位体が重い原子核の準核分裂で形成されうることが示唆された。最近では、ウランやキュリウム等のアクチノイド原子核の衝突による多核子移行反応が安定の島内の中性子の多い超重元素の合成に利用できることが示された。中性子の多いノーベリウムやシーボーギウムの原子核の合成が最も可能性が高いと考えられている。 フレロビウム同位体のアルファ崩壊半減期の理論的評価は、実験データを支持した。298Flは、長い間二重魔法数であると考えられ、アルファ崩壊半減期は約17日であると予測される。核融合による298Flの直接合成は、184個の中性子となるターゲットと安定な発射原子核の組合せが知られておらず、また半減期14秒の50Ca等の放射性発射原子核を質を保ったまま強くぶつけることができないため、現時点では不可能である。現在では、安定の島の中心付近にあるコペルニシウム(291Cn、293Cn)やフレロビウムの長寿命原子核を合成できる可能性のある方法として、250Cm、249Bk、251Cf、254Es等のより重いターゲットを48Caと融合させて、299Uue、295Ts、295Lvの崩壊生成物として291Mcや291Flを合成する方法がある。これは、アルファ崩壊で、電子捕獲により安定の島の中心に近づいていく原子核ができるのにちょうど十分な中性子数であるが、反応断面積が小さく、ベータ安定線の付近の超重元素の崩壊の性質はほとんど分かっていない。この方法は現在では、安定の島の原子核を得る最も希望の持てる方法と考えられているが、実際に実施可能かどうかは分かっていない。もう一つの可能性のある方法は、制御された核爆発を用いて高中性子流を発生させ、そのような同位体を大量に作る方法である。これは、天然で最初にアクチノイドが形成されたr過程を模倣したもので、258-260Fmと質量数275(原子番号104-108)をの不安定性ギャップをバイパスすることで、ポロニウム以降の不安定性ギャップを避けている。そのような同位体のいくつか(特に291Cn、293Cn)は天然でも合成されているが、数千年の半減期で崩壊してしまい、また量が少ないので、宇宙線以外の原始核種からは検出できないだろうと考えられている。
※この「核安定性と同位体」の解説は、「フレロビウム」の解説の一部です。
「核安定性と同位体」を含む「フレロビウム」の記事については、「フレロビウム」の概要を参照ください。
核安定性と同位体
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/02/06 10:27 UTC 版)
キュリウム以降の核種の安定性は、原子番号の増加とともに急激に減少する。原子番号101以降の全ての同位体は半減期30時間以内に放射性崩壊する。鉛以降の元素は、安定同位体を持たない。これは、陽子のクーロン力が大きくなり、長い時間自発核分裂が起こらないように強い力で原子核を結び付けておくことができなくなるためである。計算によると、他に安定化因子がない場合には、103以上の陽子を持つ元素は存在できないことになる。しかし、1960年代の研究者は、陽子114個、中性子184個に近い原子核は、この不安定性を弱め、半減期が数千年から数百万年に達するということを提案した。まだ科学はこの島まで辿り着けていないが、オガネソンを含む超重元素の存在によりこの安定効果が真実であることが確認され、既知の核種も予測される島の位置に近い原子核ほど指数関数的に長い寿命を持つ。テネシンはこれまで作られた中で2番目に重い元素であり、既知の全ての同位体の半減期は1秒以下であるが、これでも発見前に予測されていた値よりも長い。ドゥブナのチームは、この元素の合成は安定の島の実在の直接的な証拠であると信じている。 295Tsは18 ± 7ミリ秒の半減期を持つと計算され、既知の293Ts及び294Tsを作るのに用いたのと同じバークリウムとカルシウムの反応で作られるかもしれないと考えられている。この反応で295Tsが作られる確率は、多くても294Tsが作られる確率の7分の1程度と推定されている。トンネル効果を用いた計算では、質量数303までのテネシン同位体の存在が予測される。これらの中で最も安定なものは296Tsで、半減期40ミリ秒でアルファ崩壊すると予測される。液滴モデルでも同様の結果が得られ、301Tsよりも重い同位体で安定性が増すという一般的な傾向が示され、335Tsのような最も重い同位体では、ベータ崩壊を考慮しなければ、宇宙の年齢よりも長い半減期となった。軽い同位体は恐らく、2008年にドゥブナのチームが万一249Bkを入手できなかった場合の代替として考えていた243Am + 50Tiの反応で得られると考えられる。50Tiビームの反応は、オガネソンより重い元素を合成するには必須である。
※この「核安定性と同位体」の解説は、「テネシン」の解説の一部です。
「核安定性と同位体」を含む「テネシン」の記事については、「テネシン」の概要を参照ください。
核安定性と同位体
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/04 04:16 UTC 版)
「安定の島」も参照 核の安定性は、最も重い原始元素であるプルトニウムの後の原子番号において増加とともに大きく下がるため、101より大きい原子番号を持つ全ての同位体はドブニウム268を除き1日未満の半減期で放射性崩壊する。原子番号が82を超える(鉛以降)元素には安定同位体がない。それにもかかわらず、まだ十分に理解されていない理由により、原子番号110–114の周辺にわずかに核の安定性があり、核物理学で安定の島として知られるものが現れる。カリフォルニア大学教授グレン・シーボーグにより提案されたこの概念は、超重元素が予測より長く続く理由を説明している。 周期表のこの領域では、N = 184が閉じた中性子殻として提案されており、Z = 114, 120, 122, 124, 126などのさまざまな原子番号が閉じた陽子殻として提案されている。安定の島はこれらの魔法数の近くに位置する核の半減期が長いことを特徴とするが、安定化効果の範囲は陽子殻閉鎖が弱くなるのと二重魔法数の損失の可能性の予測により不確かである。より最近の研究では、安定の島の中心にベータ安定コペルニシウム同位体291Cnや293Cnとなると予測しており、ウンビビウムは島のかなり上に位置し、殻効果に関係なく半減期が短くなると思われる。元素112–118の安定性の向上は、この核の扁円形と自発核分裂に対する抵抗性にも起因している。また、同じモデルでは306Ubbを次の球状二重魔法核として提案されており、球状核の真の安定の島を定義している。 量子トンネルモデルは、ウンビビウム同位体284–322Ubbのアルファ崩壊半減期が315Ubbより軽い全ての同位体でマイクロ秒のオーダーもしくはそれ以下であると予測し、この元素の実験的観測における重要な課題を強調している。1マイクロ秒の境界の正確な位置はモデルにより異なるが、これは多くの予測と一致している。さらに自発核分裂はこの領域で主要な崩壊モードになると予想され、いくつかの偶々同位体の半減期は核子のペアリングにより生じる最小の障害と魔法数からずっと離れたことによる安定化効果の損失によりフェムト秒オーダーの半減期が予測される。同位体280–339Ubbの半減期と確率的な崩壊系列に関する2016年に行われた計算では確証的な結果が得られており、280–297Ubbは非束縛陽子(proton unbound)であり、陽子放出により崩壊する可能性がある。298–314Ubbはマイクロ秒オーダーのアルファ半減期を持ち、 314Ubbより重いものは主に半減期の短い自発核分裂により崩壊する。核融合蒸発反応に取り込まれる可能性のある軽いアルファ放射体については、既知もしくは到達可能な軽い元素の同位体にいたる長い崩壊系列がいくつか予測される。さらに、N = 184殻閉鎖のすぐ上の中性子数の結合エネルギーが著しく低い結果として、同位体308–310Ubbの半減期は1マイクロ秒未満と予測されており、これは検出するには短すぎる。また、全ての半減期が約1秒である第2の安定の島がZ ~ 124およびN ~ 198の周辺に存在するかもしれないが、これらの原子核に到達することは現在の実験技術では難しいあるいは不可能である。しかし、これらの予測は選択された核質量モデルに強く依存しており、ウンビビウムのどの同位体が最も安定であるかは不明である。いずれにしても、これらの原子核は入手可能なターゲットと発射体の組み合わせでは複合核に十分な中性子を供給できないため、合成が困難である。核融合反応で到達可能な原子核であっても、自発核分裂やあるいはクラスタ崩壊にも重要な分岐がある可能性があり、通常連続したアルファ崩壊により同定される超重元素の同定に別のハードルをもたらす。
※この「核安定性と同位体」の解説は、「ウンビビウム」の解説の一部です。
「核安定性と同位体」を含む「ウンビビウム」の記事については、「ウンビビウム」の概要を参照ください。
- 核安定性と同位体のページへのリンク