多重共線性 検出方法

多重共線性

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/29 07:51 UTC 版)

検出方法

モデルに多重共線性が存在する可能性を示す指標には以下のものがある。

  1. 予測変数を追加または削除したときの推定回帰係数の大きな変化
  2. 多重回帰において影響を受ける変数の回帰係数が有意ではないが、それらの係数がすべてゼロであるという複合仮説(結合仮設)が棄却される(F検定を使用)。
  3. 多変量回帰で特定の説明変数の係数が有意でなくても、その説明変数に対する被説明変数の単回帰でその係数がゼロから有意に異なる場合、この状況は多変量回帰における多重共線性を示している。
  4. 多重共線性の正式な検出許容値または分散拡大係数(VIF)を提案している著者もいる。

    ここで、 は、説明変数 j を他のすべての説明変数に回帰したときの決定係数である。公差が 0.20 または 0.10 未満、および/または VIF が 5 または 10 以上であれば、多重共線性の問題があることを示している[2]
  5. Farrar–Glauber 検定: [3] 変数が直交していることがわかれば、多重共線性はない。変数が直交していなければ、少なくともある程度の多重共線性が存在していることになる。
    C. Robert Wichers は、Farrar-Glauber偏相関検定は、与えられた偏相関が異なる多重共線性パターンに対応する可能性があるという点で、効果がないと主張している[4]。Farrar-Glauber検定は、他の研究者からも批判されている[5][6]
  6. 条件数検定: 行列における悪条件の標準的な尺度が条件数である。これは、行列の逆行列が有限精度の数値(標準的なコンピュータの単精度浮動小数点数倍精度浮動小数点数)では数値的に不安定であることを示すものである。 元の行列の小さな変化に対して、計算された逆行列がどの程度敏感に反応するかを示す。条件数は、最大の固有値設計行列の最小の固有値で割った値の平方根を求めることで計算される。条件数が30以上の場合、その回帰は深刻な多重共線性を持つ可能性がある。多重共線性はさらに、高い条件数に関連する2つ以上の変数が説明される分散の割合が高い場合に存在する。この方法の利点は、どの変数が問題の原因となっているかを示せることである[7]
  7. データ摂動処理[8]多重共線性は、データにランダムなノイズを加えて何度も回帰を繰り返し、係数がどれだけ変化するかを見ることで検出できる。
  8. 説明変数間の相関行列を作成すると、右辺の変数の組み合わせが多重共線性の問題を引き起こしている可能性を示すことができる。 相関値(非対角要素)が 0.4 以上であれば、多重共線性の問題があると解釈されることがある。しかしこの方法は非常に問題が多く、推奨されない。直感的に表現するなら、相関は二変数の関係を表すのに対し、共線性は多変数の現象である。

  1. ^ 井上俊夫, 岩崎祐一, 加藤剛, 熊倉隆二『わかりやすい薬学系の統計学入門』小林賢, 佐古兼一 編(第9版)、講談社、2020年、106頁。ISBN 978-4-06-156312-4 
  2. ^ O’Brien, R. M. (2007). “A Caution Regarding Rules of Thumb for Variance Inflation Factors”. Quality & Quantity 41 (5): 673–690. doi:10.1007/s11135-006-9018-6. 
  3. ^ Farrar, Donald E.; Glauber, Robert R. (1967). “Multicollinearity in Regression Analysis: The Problem Revisited”. Review of Economics and Statistics 49 (1): 92–107. doi:10.2307/1937887. hdl:1721.1/48530. JSTOR 1937887. https://doi.org/10.2307/1937887. 
  4. ^ Wichers, C. Robert (1975). “The Detection of Multicollinearity: A Comment”. Review of Economics and Statistics 57 (3): 366–368. doi:10.2307/1923926. JSTOR 1923926. 
  5. ^ Kumar, T. Krishna (1975). “Multicollinearity in Regression Analysis”. Review of Economics and Statistics 57 (3): 365–366. doi:10.2307/1923925. JSTOR 1923925. 
  6. ^ O'Hagan, John; McCabe, Brendan (1975). “Tests for the Severity of Multicolinearity in Regression Analysis: A Comment”. Review of Economics and Statistics 57 (3): 368–370. doi:10.2307/1923927. JSTOR 1923927. 
  7. ^ a b Belsley, David (1991). Conditioning Diagnostics: Collinearity and Weak Data in Regression. New York: Wiley. ISBN 978-0-471-52889-0. https://archive.org/details/conditioningdiag0000bels 
  8. ^ R言語用のパッケージがある。:perturb: Tools for evaluating collinearity”. R Project. 2015年7月18日 13:55閲覧。
  9. ^ Chatterjee, S.; Hadi, A. S.; Price, B. (2000). Regression Analysis by Example (Third ed.). John Wiley and Sons. ISBN 978-0-471-31946-7. https://archive.org/details/regressionanalys0000chat_q4i3 
  10. ^ Gujarati, Damodar (2009). “Multicollinearity: what happens if the regressors are correlated?”. Basic Econometrics (4th ed.). McGraw−Hill. pp. 363. https://archive.org/details/basiceconometric05edguja 
  11. ^ 12.6 - Reducing Structural Multicollinearity |。STAT 501”. newonlinecourses.science.psu.edu. 2019年3月16日閲覧。
  12. ^ Lipovestky; Conklin (2001). “Analysis of Regression in Game Theory Approach”. Applied Stochastic Models in Business and Industry 17 (4): 319–330. doi:10.1002/asmb.446. 
  13. ^ 詳細な議論についてはこちら:Van Den Poel, D.; Larivière, B. (2004). “Customer attrition analysis for financial services using proportional hazard models”. European Journal of Operational Research 157: 196–217. doi:10.1016/S0377-2217(03)00069-9. 
  14. ^ Kock, N.; Lynn, G. S. (2012). “Lateral collinearity and misleading results in variance-based SEM: An illustration and recommendations”. Journal of the Association for Information Systems 13 (7): 546–580. doi:10.17705/1jais.00302. http://www.scriptwarp.com/warppls/pubs/Kock_Lynn_2012.pdf. 






多重共線性と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「多重共線性」の関連用語

多重共線性のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



多重共線性のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの多重共線性 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS