コルモゴロフ–スミルノフ検定
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/03/02 01:33 UTC 版)
コルモゴロフ–スミルノフ検定(コルモゴロフ–スミルノフけんてい、英: Kolmogorov–Smirnov test)は統計学における仮説検定の一種であり、有限個の標本に基づいて、二つの母集団の確率分布が異なるものであるかどうか、あるいは母集団の確率分布が帰無仮説で提示された分布と異なっているかどうかを調べるために用いられる。しばしばKS検定と略される。
1標本KS検定は、経験分布を帰無仮説において示された累積分布関数と比較する。主な応用は、正規分布および一様分布に関する適合度検定である。正規分布に関する検定については、リリフォースによる若干の改良が知られている(リリフォース検定)。正規分布の場合、一般にはリリフォース検定よりもシャピロ-ウィルク検定やアンダーソン-ダーリング検定の方がより強力な手法である。
2標本KS検定は、二つの標本を比較する最も有効かつ一般的なノンパラメトリック手法の一つである。これは、この手法が二つの標本に関する経験分布の位置および形状の双方に依存するためである。
検定統計量

n個の標本y1, y2, ..., ynに対する経験分布Fnは以下のように与えられる。
- コルモゴロフ–スミルノフ検定のページへのリンク