かせつ‐けんてい【仮説検定】
読み方:かせつけんてい
統計学で、母集団から抽出した標本が、母集団全体を説明する統計的仮説を支持するかを判定すること。実際に観測された標本が、ある仮説に従う母数または確率分布をもつ母集団から抽出される確率を求め、有意水準と比較して仮説の当否を判断する。統計的仮説検定。検定。
[補説] 1回の実験で、3回連続して1の目が出たサイコロがあったとし、これについて仮説検定を試みる。まず、このサイコロがいかさまではないという帰無仮説を立てる。正しいサイコロが同様の目を出す確率は二項分布に従うため、1/216と求められる。有意水準を1パーセントとすると、この帰無仮説は棄却され、サイコロはいかさまであるという対立仮説が成立する。
仮説検定
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/04/12 04:35 UTC 版)
![]() | この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2013年5月) |
仮説検定(かせつけんてい、英: hypothesis testing)あるいは統計的仮説検定 (statistical hypothesis testing)[補 1] とは、母集団分布の母数に関する仮説を標本から検証する統計学的方法の一つ。日本産業規格では、仮説 (statistical hypothesis) を「母数又は確率分布についての宣言。帰無仮説と対立仮説がある。」と定義している[1]。検定 (statistical test) を「帰無仮説を棄却し対立仮説を支持するか、又は帰無仮説を棄却しないかを観測値に基づいて決めるための統計的手続き。その手続きは、帰無仮説が成立しているにもかかわらず棄却する確率が α 以下になるように決められる。この α を有意水準という。」と定義している[2]。
統計的仮説検定の方法論は、ネイマン=ピアソン流の頻度主義統計学に基づくもの[補 2]と、ベイズ主義統計学に基づくものとの二つに大きく分けられる[3]。ただし「仮説検定」という場合、前者だけを指すことがある。本項では前者および日本産業規格での定義を説明する。
統計的仮説検定の手順
統計的仮説検定においては、仮説が正しいと仮定した上で、それに従う母集団から、実際に観察された標本が抽出される確率を求め、その値により判断を行う。その確率が十分に(予め決めておいた値より)小さければ、その仮説を棄却する(すなわち仮説は成り立ちそうもないと判断する)。
統計的仮説検定は次のような手順で実施する。
仮説の設定
仮説が正しいと仮定した場合にその標本が観察される確率を算出できるように、仮説を統計学的に表現する。検定は下記の二者択一となり、帰無仮説[補 3]を棄却できるかどうかを調べる。
- 帰無仮説
- 価値がない[4]、何の関係もない、差異はみられない、仮説などそもそもなかった、などを意味するもの。普通 H0 と書く[5]。
- 対立仮説
- 帰無仮説に対立するので、対立仮説と呼ばれる。帰無仮説が棄却された際に採択される。普通仮説を意味する [hypothesis] の頭文字を用いて H1 と書く[6]。帰無仮説の正しさを求めるように検定を進めるが、成り立つか知りたいのはこちらの方である。
仮説の設定例
例として、プラセボに対する薬の試験(「薬の効果を有意的に主張できるか」を調べる)を例にとれば、
- 帰無仮説は、「薬の効果を主張できない」に当たり、下記のように仮説を立てる。
- 対立仮説は、「薬の効果を主張できる」に当たり、下記の仮説に相当する。
- 「薬に対する反応の平均がプラセボに対するそれとは異なる。」
統計量の算出
標本データから、仮説に関係した情報を要約する検定統計量を計算する。下記のように十分性を持つ統計量(十分統計量)が存在すればそれを計算する。単純二仮説の場合は、尤度比が仮説検定の十分統計量となる。
母数に対応する十分統計量は、母集団の確率分布が指数型分布族である場合にのみ存在する[要出典]。例で言えば、指数型分布族で、2つの標本平均の差 m1 − m2 は十分統計量である。
統計量の確率分布
帰無仮説に基づき、検定統計量の確率分布を明らかにする。
例では、標本平均の差は正規分布に従い、その標準偏差は母標準偏差に 日本産業規格では、検出力 (英: statistical power) を「帰無仮説が正しくないとき,帰無仮説を棄却する確率。すなわち,第2種の誤りをおかさない確率であり,通常 1 − β で表される。」と定義している[11]。
より高い検出力を、より小さいサンプルサイズで実現することが好ましい。
帰無仮説が正しいときに、これを棄却してしまう誤りを第1種の誤り (Type I error) という[12]。第1種の誤りを犯す確率を α で表す。α を危険率とも呼び、有意水準に等しい。有意水準を 5% とした時、5% 以下の発生確率しかない事象が起きると、帰無仮説が間違っていたと考えられる。これは、仮説が正しいのに誤って否定してしまう確率が 5% 存在することになる。日本産業規格では、「帰無仮説が正しいとき,帰無仮説を棄却する誤り。あわてものの誤りともいう。」と定義している[13]。なお、ISO では error of the first kind と表記している[14]。
誤った帰無仮説を棄却しない誤りのことを第2種の誤り (Type II error) という[12]。第2種の誤りを犯す確率を β で表す。1 − β を検定力または検出力 (power) と呼び、誤った帰無仮説を正しく棄却できる確率を表す。βは真の母数に依存し、自分で決めることが出来ない。日本産業規格では、「帰無仮説が正しくないとき,帰無仮説を棄却しない誤り。ぼんやりものの誤りともいう。」と定義している[15]。なお、ISO では error of the second kind と表記している[16]。
第1種の誤りを減らそうとすれば第2種の誤りが増える(またはその逆)という傾向がある。なお第1種の誤り (α) 対 検出力 (1 − β) のグラフを、受信者操作特性(ROCカーブ)と呼ぶ。
仮説検定では一般に、あらかじめ指定した十分小さい α に対し、β をなるべく小さく(検出力をなるべく大きく)するように棄却域を選ぶ方針をとる(ネイマン・ピアソンの基準)。
日本産業規格では、検出力関数を「仮説があるパラメータで表現されているとき,パラメータの値によって検出力を与える関数。」と定義している[17]。
例のように、母集団の分布として正規分布を、あるいは比較する2群間の等分散(標準偏差が等しい)を仮定する(母数=パラメータを仮定する)検定法をパラメトリック(Parametric)、それらを仮定せず一般の分布に適用できる検定法をノンパラメトリック(Non-parametric)な検定と呼ぶ。具体的な方法の例を挙げる。
検定の目的からは、母数の有意性の検定、適合度検定(特定の母集団から抽出されたものか)、均一性検定(2標本が同一母集団によるものか:上の例)、独立性検定(2標本が独立か)などに分けられる。
逐次的仮説検定(英: sequential hypothesis testing)とは、逐次的に行う仮説検定を指す。すなわちサンプルサイズが固定数とは限らず、停止則を導入し、それが満たされるまでは実際には仮説検定の実施を遅らせ、サンプルの追加を行う。停止則が満たされた段階では、決定則(すなわち仮説検定)を実施する。逐次的確率比検定(逐次的尤度比検定)も参照。
より小さいサンプルサイズで、より高い検出力を実現することが好ましく、統計学的に最適な停止則および決定則を最適停止則および最適決定則と呼ぶ。
オンライン的な仮説検定として利用可能である。その場合、サンプルサイズはレイテンシとして位置づけられる。
第1種の誤り
第2種の誤り
第1種の誤りと第2種の誤りの関係
検出力関数
種類
パラメトリックな検定手法
ノンパラメトリックな検定手法
逐次的仮説検定
脚注
補足
出典
参考文献
関連項目
仮説検定
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/07/28 01:18 UTC 版)
要約統計量を所与として、仮説検定の計算を表形式で示している。平方和の2つの列が説明値を示しているのに対して、結果の説明には1つの列しか必要ではない。 ANOVA表、固定モデル、単一因子、完全ランダム化実験変動要因平方和 (SS)平方和 (SS)自由度 (DF)平方平均 (MS)F説明SS計算SSDFMS処理 ∑ T r e a t m e n t s I j ( m j − m ) 2 {\displaystyle \sum _{Treatments}I_{j}(m_{j}-m)^{2}} ∑ j ( ∑ i y i j ) 2 I j − ( ∑ j ∑ i y i j ) 2 I {\displaystyle \sum _{j}{\frac {(\sum _{i}y_{ij})^{2}}{I_{j}}}-{\frac {(\sum _{j}\sum _{i}y_{ij})^{2}}{I}}} J − 1 {\displaystyle J-1} S S T r e a t m e n t D F T r e a t m e n t {\displaystyle {\frac {SS_{Treatment}}{DF_{Treatment}}}} M S T r e a t m e n t M S E r r o r {\displaystyle {\frac {MS_{Treatment}}{MS_{Error}}}} 誤差 ∑ T r e a t m e n t s ( I j − 1 ) s j 2 {\displaystyle \sum _{Treatments}(I_{j}-1)s_{j}^{2}} ∑ j ∑ i y i j 2 − ∑ j ( ∑ i y i j ) 2 I j {\displaystyle \sum _{j}\sum _{i}y_{ij}^{2}-\sum _{j}{\frac {(\sum _{i}y_{ij})^{2}}{I_{j}}}} I − J {\displaystyle I-J} S S E r r o r D F E r r o r {\displaystyle {\frac {SS_{Error}}{DF_{Error}}}} 総計 ∑ O b s e r v a t i o n s ( y i j − m ) 2 {\displaystyle \sum _{Observations}(y_{ij}-m)^{2}} ∑ j ∑ i y i j 2 − ( ∑ j ∑ i y i j ) 2 I {\displaystyle \sum _{j}\sum _{i}y_{ij}^{2}-{\frac {(\sum _{j}\sum _{i}y_{ij})^{2}}{I}}} I − 1 {\displaystyle I-1} M S E r r o r {\displaystyle MS_{Error}} は、モデルの σ 2 {\displaystyle \sigma ^{2}} に対応する分散の推定量である。
※この「仮説検定」の解説は、「一元配置分散分析」の解説の一部です。
「仮説検定」を含む「一元配置分散分析」の記事については、「一元配置分散分析」の概要を参照ください。
仮説検定と同じ種類の言葉
- 仮説検定のページへのリンク