近代科学における要素還元主義からシステムへの転換
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/11 03:32 UTC 版)
「一般システム理論」の記事における「近代科学における要素還元主義からシステムへの転換」の解説
しかし、諸分野の理論体系の複雑度が増大するに連れて、近代科学自体にも限界は見え始めた。 19世紀までに推進された科学的方法である分析的・原子論的手法では生物が持つ非線形性を説明できず、形而上学的な「全体性」という概念に説明を逃げていることが問題視され続けていた。ルートヴィヒ・フォン・ベルタランフィによれば、20世紀前半から科学における学問の蛸壺化が目立ち始め、各専門分野で本質的に見て枝葉末節的あるいは重複した議論が目立って増加していたため、議論が進まなくなり、科学の進歩が阻まれようとしていた。システム理論は、この複雑化した状況を整理し、「全体性」のメカニズムを解明することで、非線形現象までを含めた高次の議論を効率良く展開する新たな科学的方法として、20世紀初頭からルートヴィヒ・フォン・ベルタランフィを中心に理論構築が開始された。 システム理論では、電子回路やコンピュータなどの人工物、生物の身体、社会集団など、ミクロからマクロまで、様々な現象における同型な法則を一旦「システム」として抽象化することで現象を整理する。この考え方は非常に大きく成功した。まず、19世紀までの近代科学の時代に「全体性」などと表現され形而上学的な扱いをされていた、非線形な現象を詳細に理解できるようになった。また、異分野間の理論の重複が激減し、科学研究の大幅な効率化までもが達成された。科学技術により成り立つ産業も様変わりし、オートメーション,コンピュータシステムなど、多様な要素が結び付いて成り立つ機械の設計において不可欠な考え方となった。 収穫加速の法則にも深く寄与している。20世紀後半にシステム理論の基礎研究と応用研究が進んで行くに連れて、非線形な現象が次々と解明され、そのメカニズムの一部は機械の設計にも取り込まれて行き、社会のインテリジェント化が急加速して行った。その勢いは現在も加速的に増大し続けおり、人間の脳機能の解明が急速に進められると共に、人間の知性を機械的に実現する汎用人工知能の開発も現実的な目標として掲げられている。 システム理論によれば、システムとは以下のようなものである。 システムは互いに作用している要素からなるものである。 システムは部分に還元することができない。 システムは目的に向かって動いている。 ひとつのシステムの中には独特の構造を持った複数の下位システムが存在する。 下位システムは相互に作用しあいながら調和し、全体としてまとまった存在をなしている。 システム理論は、早くから研究者が組織や相互依存の関係を述べる為に使われていた用語であった。部分から部分の組織まで;「構成要素」から「動的関係」まで移行するという点で、このシステムの考えは古典的な還元主義(その主題として一つの部分を持っている)の見地と対照的である。システムは、規則的に相互作用するか、あるいは、一緒になるとき、新しい全体を構成する活動/部分のグループを相互に関係づけられ構成される。ほとんどの場合、この全ては構成要素に見いだされることができない特性を持っている。 ルートヴィヒ・フォン・ベルタランフィ財団の文章の中で、システム理論のシステムの構想は、1600年代のゴットフリート・ライプニッツやニコラウス・クザーヌスの哲学や彼の対立者の一致(Coincidentia Oppositorum)からたどる事が出来る。複雑さ、自己組織化、結合説、適応システムといった議題は、既にノーバート・ウィーナーやウィリアム・ロス・アシュビー、ジョン・フォン・ノイマンとハインツ・フォン・フェルスターのような研究者を通して1940年代から1950年代に、サイバネティックスに近い分野で研究されていた。彼らは、最新の道具を用いず、鉛筆、紙、計算を用いて複雑なシステムを調べたという。 マーガレット・ミードとグレゴリー・ベイトソンは社会科学の中に、確かな、積極的で否定的な反響のようなシステム理論の学際的な原則をもたらすために同じく大規模な対話を行った。ジョン・フォン・ノイマンは、コンピュータを使わず、鉛筆と紙だけでセル・オートマトンと自己複製システムを発見した。アレクサンドル・リャプノフとアンリ・ポアンカレはまったくどんなコンピュータも用いずにカオス理論の基礎に取り組んだ。 同時にハワード・T・オーダム(放射エネルギー生態学者)は全体的なシステムの研究がどんなシステム尺度においてでもエネルギー論と運動学を描写することができる言語を必要としたことを認識した。彼は、電子工学の電気回路言語に基づいてこの役割を満たすために一般的なシステム、あるいは万能の言語を発展させた。この言語はエネルギーシステム言語として知られるようになった。 統計上の仕組みと複雑なシステムズ、テキサス大学オースティン校、における研究のためのイリヤ・プリゴジン、プリゴジンセンターが、生物系のために類縁体を申し出ることを提案して、緊急の固有性のために「平衡から遠く離れたシステム(英:far from equilibrium systems)」を研究した。 フランシスコ・バレーラとウンベルト・マトゥラーナのオートポイエーシスはこの分野における更なる発展をもたらした。 オンラインの論文で、Béla H. Bánáthyは「システム調査」という題の論文に次のように記した。 「システムの視点から言うと、システム調査に重要なシステム調査の自制に基づいている世界観はシステムの構成概念であるということです。最も一般的な意味で、システムが関係のウェブによって結ばれて、そして一緒に加入された地域の外形を意味します。プライマーのグループは全体行動をしてシステムをメンバーの間の関係を家族として定義します。ベルタランフィはシステムを「立ったままの関係の要素である」と定義しました。「参加することと関係を作り出すウェブを統合することは全体の新興の特性を作ります。全体のこれらの特性は部分の分析に見いだされないかもしれません。これは部分で見られることができないシステム理論は完璧の価値を持ちます」システム調査はシステムそのものなのです。 概念的なシステムとして、それは4つの相関関係を持っています、そして内部に一貫した局面が全体として作用しているようにします。システム哲学、システム理論、システム方法論そしてシステム応用です。さらに、システム調査が、規律正しい良い調査の2つの種類を受け入れます;その結論指向の照会モードはシステム知識を引き起こします、その決定指向の照会モードはシステム知識を論述と実世界の状況を取り上げるシステム方法の選択肢に適用します。」 システム社会の創設者とともに「人類の利益」が科学の目的であると論じたBéla H. Bánáthyによってもこの理論は、重要でかつ広範囲の貢献をした。
※この「近代科学における要素還元主義からシステムへの転換」の解説は、「一般システム理論」の解説の一部です。
「近代科学における要素還元主義からシステムへの転換」を含む「一般システム理論」の記事については、「一般システム理論」の概要を参照ください。
- 近代科学における要素還元主義からシステムへの転換のページへのリンク