現状の施設・設備
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/08/10 01:39 UTC 版)
「関門トンネル (山陽本線)」の記事における「現状の施設・設備」の解説
関門トンネルの下り線トンネルは全長3,614.04メートル、上り線トンネルは全長3,604.63メートルである。海底部の延長は上下線とも1,140メートルある。また本線トンネルよりやや深い場所に、下関方と門司方の立坑の間を結ぶ全長1,322メートルの試掘坑道(通称豆トンネル)が存在し、トンネル完成後は作業用のトンネルとして使用されている。平均土被りは約11メートルあるが、建設時に粘土被覆を行った箇所では最小9.5メートルとなっている。 下関方の試掘立坑は彦島の東端の弟子待にあり、JR九州の保守作業用の出入口として使用されている。ただし、こちらの立坑にはエレベーターの設備がない。また下関方取付部の建設に際して杉田斜坑が建設されたが、完成後に埋め戻されている。 門司方の試掘立坑は、国道199号の脇に所在し、昇降機の櫓が設置されており、エレベーターの使える唯一の立坑として、関門トンネルの機能を維持するための重要な施設として使われ続けている。また鹿児島本線小森江駅東側の駐車場には、立坑にコンクリートで蓋をした構造物が2か所残されている。北側にある矩形の立坑にかまぼこ形の蓋がしてあるものが下り線トンネル用の門司方立坑で、ここから下り線の海底部を掘削したシールドマシンが搬入されて発進した。南側の丸い蓋がなされている立坑が上り線トンネル用の門司方第一立坑で、圧気工法の発進拠点として用いられた。上り線トンネル用の門司方第二立坑は、試掘立坑の近くに所在したが、撤去されて残存していない。 完成当初、下り線トンネル内のレールは、テルミット溶接により連続敷設されていた。しかし摩耗が激しく溶接部の破断事故もあったため、上り線の開通時に通常の25メートルレールに交換された。2006年(平成18年)時点では、1メートルあたりの重量が60キログラムである60キロレールで、全長100メートルのものを使用している。海水が混入した漏水が排水溝を流れており、また湿度が90パーセントに達する条件のため、レールの腐食が早く通常の5分の1程度の交換周期でレールの交換を行っている。道床は、トンネル中央部がコンクリート道床、トンネル出入り口から下り線は約250メートル、上り線は約400メートルがバラスト道床になっている。枕木は、バラスト道床部は通常の並マクラギであるが、コンクリート道床部では関門型特殊短マクラギを採用している。下り線では25メートルあたり41本、上り線では25メートルあたり45本の枕木を敷設しており、この敷設密度の差は「下り線の成績により密にした」と記録があるだけで、理由は明らかではない。また締結装置も、関門型特殊レール締結装置を採用している。この締結装置は、一般型のタイプレートでは摩耗・腐食・折損が著しかったために改良に取り組み、1955年(昭和30年)ころからタイプレートに直接荷重をかけずに枕木に分散させる仕組みのものが開発されたものである。 関門トンネルを走行する列車への電力供給用に、下関変電所と門司変電所が設置されている。遠隔制御技術が発達する昭和30年代までは、機器の運転や記録作成のために変電所への運転員の常駐が必要で、これらの変電所は1変電所が1変電区となり、下関変電区・門司変電区として区長以下約20名の職員が配置されて交代制で勤務を行っていた。開通当初は出力2,000キロワットの水銀整流器をそれぞれ2台ずつ備えており、1944年(昭和19年)5月にそれぞれ1台ずつさらに増設された。第二次世界大戦末期には、空襲を受けて変電設備が被災することに備えて、彦島に出力4,000キロワットの地下変電所が用意され、終戦後まもなく約20日間だけ実際に運転されたことがあったが、廃止されて設備は従来の変電所に復元された。第二次世界大戦後は負荷の低下により、1949年(昭和24年)に水銀整流器を1台ずつ東海道本線の電化用に供出している。1957年(昭和32年)に容量を増強したあと、1961年(昭和36年)6月の山陽本線小郡 - 下関電化と九州島内の交流電化に際して、下関変電所は水銀整流器2台をシリコン整流器に換装し出力増強が実施されて関門トンネル内の大部分の負荷を担うほか、山陽本線側の負荷も担うようになった一方で、門司変電所は直流設備を一部縮小したうえで交流用の変電設備が設置され、以降の門司変電所は関門トンネルに関しては下り線の門司方上り勾配のピーク電力のみを負担するように運用されるようになった。1961年(昭和36年)12月に両変電所とも無人化された。下関変電所は彦島の関門トンネル入り口近くに、門司変電所は門司駅構内に位置し、いずれもJR九州博多電力指令から遠隔操作されている。 関門トンネル内の架線は、下り線開業時はシンプルカテナリ式を採用していた。しかし開通後予想以上に摩耗が激しかったことや、漏水による碍子の劣化を考慮し、上り線開通時には支持碍子を変更しダブルシンプルカテナリ式を採用した。上り線開通後、約1か月下り線トンネルの通行を休止して、下り線の架線も同じ仕様に改修した。トンネル内では、特殊碍子を一部で使用することで、大型貨物の輸送に対応するために架線の高さ4,550ミリメートルを確保している。トンネル内は列車通過による強風で塵埃が巻き上げられて碍子に付着することから、絶縁劣化が激しく、表面にシリコンコンパウンドを塗布するといった対策を行っている。また開業時は架線の引き留めはトンネル内では行わず、両側の出入口から1本で引っ張る構造であったが、饋電吊架線の緩みの調整が難しいという問題があり、1963年(昭和38年)に約500メートルごとに8区分した構造に改造された。 下関駅と門司駅の間は複線ではあるが、信号方式としては単線自動閉塞が2本並んでいる双単線である。下り線・上り線とも、駅間に5基の閉塞信号機が下り・上りの双方に向けて建てられている。これは、改修作業などで1本ずつトンネルを閉鎖して運転することができるようにしたもので、実際に毎月指定された日の保守作業時間帯(2013年時点では12時ごろから15時30分ごろ)には単線運転をして保守作業を行っている。 トンネルの維持管理のために、おおむね1、2年に1度の坑内調査(外観目視調査、変状調査、打音調査、トンネル断面測定)、年に3回の漏水量調査、年に1回の関門航路の深浅測量(海の深さの測量)によるトンネル土被り調査、そしておおむね10年ごとの覆工コンクリートのコア採取による各種試験が実施されている。漏水量は、完成からまもない1944年(昭和19年)では1,743立方メートル/日あったが、1952年(昭和27年)には2,274立方メートル/日まで増加したあと、2007年(平成19年)には450立方メートル/日程度まで減少している。これは、地下水位以下に建設されたトンネルとしてはかなり少ないもので、非常に丁寧に施工された結果であると推定されている。また上り線の方が下り線より漏水量が少なく、先に開通した下り線の結果を受けて上り線では入念な対策が取られた結果だと考えられている。漏水量の減少は、漏水防止処置が進んだことと、下関側で地上の宅地化が進んだ結果であると推定されている。湧水中に含まれる海水の量は、1991年(平成3年)時点の調査では、総湧水量が800トン/日程度のうち10パーセント程度の約80トン/日程度であった。海底トンネルにおいて、コンクリート構造物の管理上問題となるのは、海水からの塩化物イオンの侵入による鉄筋の腐食と硫酸塩によるコンクリートの化学的腐食であるが、2009年(平成21年)までの時点では特に大きな変状はなく、コンクリートの圧縮強度にも低下は見られていない。トンネルは全体として健全な状態にあり、覆工に大規模な補修・補強対策を施す必要性は認められていない。なお、1993年(平成5年)時点で関門トンネルの施設修繕費用は年1億円程度とされている。
※この「現状の施設・設備」の解説は、「関門トンネル (山陽本線)」の解説の一部です。
「現状の施設・設備」を含む「関門トンネル (山陽本線)」の記事については、「関門トンネル (山陽本線)」の概要を参照ください。
- 現状の施設・設備のページへのリンク