白亜紀と古第三紀の間の大量絶滅とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 白亜紀と古第三紀の間の大量絶滅の意味・解説 

白亜紀と古第三紀の間の大量絶滅

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/10 10:23 UTC 版)

白亜紀古第三紀の間(K-Pg)の大量絶滅(はくあきとこだいさんきのあいだのたいりょうぜつめつ、英語: Cretaceous–Paleogene extinction event, K–Pg extinction event[注釈 1]、または白亜紀と第三紀の間の(K–T)大量絶滅[注釈 2])は、約6600万年前に突如起こったとされる、地球上の動植物のうち4分の3の種が絶滅した[2][3][4]大量絶滅である[3]


注釈

  1. ^ 英略語のうちKは白亜紀の一般的な略語でドイツ語で白亜紀を意味するKreideに由来する。一方でPgは古第三紀を意味する略語である。
  2. ^ かつて古第三紀は第三紀(Tertiary)と呼ばれることが多かったが、現在この呼び方は国際層序委員会から正式な地質年代の呼称として推奨されていない[1]
  3. ^ 核爆発や天体衝突といった高圧化で生成される内部構造をもった鉱物。
  4. ^ この巨大津波は海岸線から数十~数百km離れた陸地まで到達したとされる。

出典

  1. ^ Ogg, James G.; Gradstein, F. M.; Gradstein, Felix M. (2004). A geologic time scale 2004. Cambridge, UK: ケンブリッジ大学出版. ISBN 978-0-521-78142-8 
  2. ^ International Chronostratigraphic Chart”. International Commission on Stratigraphy (2015年). 2014年5月30日時点のオリジナルよりアーカイブ。2015年4月29日閲覧。
  3. ^ a b c d Renne, Paul R.; Deino, Alan L.; Hilgen, Frederik J.; Kuiper, Klaudia F.; Mark, Darren F.; Mitchell, William S.; Morgan, Leah E.; Mundil, Roland et al. (7 February 2013). “Time scales of critical events around the Cretaceous-Paleogene boundary”. サイエンス 339 (6120): 684–687. Bibcode2013Sci...339..684R. doi:10.1126/science.1230492. PMID 23393261. オリジナルの2017-02-07時点におけるアーカイブ。. https://web.archive.org/web/20170207164818/http://www.cugb.edu.cn/uploadCms/file/20600/20131028144132060.pdf 2017年12月1日閲覧。. 
  4. ^ Fortey, Richard (1999). Life: A natural history of the first four billion years of life on Earth. Vintage. pp. 238–260. ISBN 978-0-375-70261-7 
  5. ^ Muench, David; Muench, Marc; Gilders, Michelle A. (2000). Primal Forces. Portland, Oregon: Graphic Arts Center Publishing. pp. 20. ISBN 978-1-55868-522-2 
  6. ^ Schulte, Peter (5 March 2010). “The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary”. サイエンス 327 (5970): 1214–1218. Bibcode2010Sci...327.1214S. doi:10.1126/science.1177265. JSTOR 40544375. PMID 20203042. http://doc.rero.ch/record/210367/files/PAL_E4389.pdf. 
  7. ^ Scientists reconstruct ancient impact that dwarfs dinosaur-extinction blast”. アメリカ地球物理学連合 (2014年4月9日). 2017年1月1日時点のオリジナルよりアーカイブ。2022年4月8日閲覧。
  8. ^ Amos, Jonathan (2017年5月15日). “Dinosaur asteroid hit 'worst possible place'”. BBC News Online. 2018年3月18日時点のオリジナルよりアーカイブ。2022年4月8日閲覧。
  9. ^ a b Alvarez, L W; Alvarez, W; Asaro, F; Michel, H V (1980). “Extraterrestrial cause for the Cretaceous–Tertiary extinction”. Science 208 (4448): 1095–1108. Bibcode1980Sci...208.1095A. doi:10.1126/science.208.4448.1095. PMID 17783054. オリジナルの2019-08-24時点におけるアーカイブ。. https://web.archive.org/web/20190824192051/https://pdfs.semanticscholar.org/f23d/f624d2e7d945277a4c06d6d66008eb0f4242.pdf 2022年4月15日閲覧。. 
  10. ^ Vellekoop, J.; Sluijs, A.; Smit, J. et al. (May 2014). “Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary”. Proc. Natl. Acad. Sci. U.S.A. 111 (21): 7537–41. Bibcode2014PNAS..111.7537V. doi:10.1073/pnas.1319253111. PMC 4040585. PMID 24821785. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040585/. 
  11. ^ The Asteroid and the Dinosaur (Nova S08E08, 1981)”. IMDB. PBS-WGBH/Nova (1981年3月10日). 2022年4月8日閲覧。
  12. ^ a b c Schulte, P. et al. (5 March 2010). “The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary”. Science 327 (5970): 1214–1218. Bibcode2010Sci...327.1214S. doi:10.1126/science.1177265. PMID 20203042. http://doc.rero.ch/record/210367/files/PAL_E4389.pdf. 
  13. ^ a b Hildebrand, A. R.; Penfield, G. T. et al. (1991). “Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatán peninsula, Mexico”. Geology 19 (9): 867–871. Bibcode1991Geo....19..867H. doi:10.1130/0091-7613(1991)019<0867:ccapct>2.3.co;2. 
  14. ^ Joel, Lucas (2019年10月21日). “The dinosaur-killing asteroid acidified the ocean in a flash: the Chicxulub event was as damaging to life in the oceans as it was to creatures on land, a study shows.”. ニューヨーク・タイムズ. オリジナルの2019年10月24日時点におけるアーカイブ。. https://web.archive.org/web/20191024040435/https://www.nytimes.com/2019/10/21/science/chicxulub-asteroid-ocean-acid.html 2022年4月8日閲覧。 
  15. ^ Henehan, Michael J. (21 October 2019). “Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact”. 米国科学アカデミー紀要 116 (45): 22500–22504. Bibcode2019PNAS..11622500H. doi:10.1073/pnas.1905989116. PMC 6842625. PMID 31636204. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6842625/. 
  16. ^ Joel, Lucas (2020年1月16日). “Asteroid or Volcano? New Clues to the Dinosaurs' Demise”. ニューヨーク・タイムズ. https://www.nytimes.com/2020/01/16/science/dinosaurs-extinction-meteorite-volcano.html 2022年4月8日閲覧。 
  17. ^ Hull, Pincelli M.; Bornemann, André; Penman, Donald E. (17 January 2020). “On impact and volcanism across the Cretaceous-Paleogene boundary”. Science 367 (6475): 266–272. Bibcode2020Sci...367..266H. doi:10.1126/science.aay5055. hdl:20.500.11820/483a2e77-318f-476a-8fec-33a45fbdc90b. PMID 31949074. https://science.sciencemag.org/content/367/6475/266 2022年4月8日閲覧。. 
  18. ^ Chiarenza, Alfio Alessandro; Farnsworth, Alexander; Mannion, Philip D.; Lunt, Daniel J.; Valdes, Paul J.; Morgan, Joanna V.; Allison, Peter A. (2020-07-21). “Asteroid impact, not volcanism, caused the end-Cretaceous dinosaur extinction” (英語). Proceedings of the National Academy of Sciences 117 (29): 17084–17093. Bibcode2020PNAS..11717084C. doi:10.1073/pnas.2006087117. ISSN 0027-8424. PMC 7382232. PMID 32601204. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382232/. 
  19. ^ Keller, Gerta (2012). “The Cretaceous–Tertiary mass extinction, Chicxulub impact, and Deccan volcanism. Earth and life”. In Talent, John. Earth and Life: Global Biodiversity, Extinction Intervals and Biogeographic Perturbations Through Time. Springer. pp. 759–793. ISBN 978-90-481-3427-4. https://archive.org/details/earthlifeglobalb00tale 
  20. ^ Bosker, Bianca (September 2018). “The nastiest feud in science: A Princeton geologist has endured decades of ridicule for arguing that the fifth extinction was caused not by an asteroid but by a series of colossal volcanic eruptions. But she's reopened that debate”. アトランティック. オリジナルのFebruary 21, 2019時点におけるアーカイブ。. https://web.archive.org/web/20190221073809/https://www.theatlantic.com/magazine/archive/2018/09/dinosaur-extinction-debate/565769/ 2022年4月8日閲覧。. 
  21. ^ a b c d Longrich, Nicholas R.; Tokaryk, Tim; Field, Daniel J. (2011). “Mass extinction of birds at the Cretaceous–Paleogene (K–Pg) boundary”. Proceedings of the National Academy of Sciences 108 (37): 15253–15257. Bibcode2011PNAS..10815253L. doi:10.1073/pnas.1110395108. PMC 3174646. PMID 21914849. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3174646/. 
  22. ^ a b c Longrich, N. R.; Bhullar, B.-A. S.; Gauthier, J. A. (December 2012). “Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary”. Proc. Natl. Acad. Sci. U.S.A. 109 (52): 21396–401. Bibcode2012PNAS..10921396L. doi:10.1073/pnas.1211526110. PMC 3535637. PMID 23236177. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535637/. 
  23. ^ Labandeira, C.C.; Johnso,n K.R. (2002). “Preliminary assessment of insect herbivory across the Cretaceous-Tertiary boundary: Major extinction and minimum rebound”. In Hartman, J.H.; Johnson, K.R.; Nichols, D.J.. The Hell Creek formation and the Cretaceous-Tertiary boundary in the northern Great Plains: An integrated continental record of the end of the Cretaceous. Geological Society of America. pp. 297–327. ISBN 978-0-8137-2361-7 
  24. ^ Rehan, Sandra M.; Leys, Remko; Schwarz, Michael P. (2013). “First evidence for a massive extinction event affecting bees close to the K-T boundary”. PLOS ONE 8 (10): e76683. Bibcode2013PLoSO...876683R. doi:10.1371/journal.pone.0076683. PMC 3806776. PMID 24194843. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3806776/. 
  25. ^ a b c d e f Nichols, D. J.; Johnson, K. R. (2008). Plants and the K–T Boundary. Cambridge, England: ケンブリッジ大学出版局 
  26. ^ Friedman M (2009). “Ecomorphological selectivity among marine teleost fishes during the end-Cretaceous extinction”. Proceedings of the National Academy of Sciences (Washington, DC) 106 (13): 5218–5223. Bibcode2009PNAS..106.5218F. doi:10.1073/pnas.0808468106. PMC 2664034. PMID 19276106. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2664034/. 
  27. ^ a b Jablonski, D.; Chaloner, W. G. (1994). “Extinctions in the fossil record (and discussion)”. Philosophical Transactions of the Royal Society of London B 344 (1307): 11–17. doi:10.1098/rstb.1994.0045. 
  28. ^ a b Alroy, John (1999). “The fossil record of North American Mammals: evidence for a Palaeocene evolutionary radiation”. Systematic Biology 48 (1): 107–118. doi:10.1080/106351599260472. PMID 12078635. 
  29. ^ a b c Feduccia, Alan (1995). “Explosive evolution in Tertiary birds and mammals”. サイエンス 267 (5198): 637–638. Bibcode1995Sci...267..637F. doi:10.1126/science.267.5198.637. PMID 17745839. 
  30. ^ a b Friedman, M. (2010). “Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction”. Proceedings of the Royal Society B 277 (1688): 1675–1683. doi:10.1098/rspb.2009.2177. PMC 2871855. PMID 20133356. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2871855/. 
  31. ^ Weishampel, D. B.; Barrett, P. M. (2004). “Dinosaur distribution”. In Weishampel, David B.; Dodson, Peter; Osmólska, Halszka. The Dinosauria (2nd ed.). Berkeley, CA: University of California Press. pp. 517–606. ISBN 9780520242098. OCLC 441742117. https://archive.org/details/dinosauriandedit00weis 
  32. ^ a b Wilf, P.; Johnson, K.R. (2004). “Land plant extinction at the end of the Cretaceous: A quantitative analysis of the North Dakota megafloral record”. Paleobiology 30 (3): 347–368. doi:10.1666/0094-8373(2004)030<0347:LPEATE>2.0.CO;2. 
  33. ^ a b c d e f g h i j k l m n o p MacLeod, N.; Rawson, P.F.; Forey, P.L.; Banner, F.T.; Boudagher-Fadel, M.K.; Bown, P.R.; Burnett, J.A.; Chambers, P. et al. (1997). “The Cretaceous–Tertiary biotic transition”. Journal of the Geological Society 154 (2): 265–292. Bibcode1997JGSoc.154..265M. doi:10.1144/gsjgs.154.2.0265. 
  34. ^ a b “Detritus feeding as a buffer to extinction at the end of the Cretaceous”. Geology 14 (10): 868–870. (1986). Bibcode1986Geo....14..868S. doi:10.1130/0091-7613(1986)14<868:DFAABT>2.0.CO;2. オリジナルの2019-02-27時点におけるアーカイブ。. https://web.archive.org/web/20190227164831/http://pdfs.semanticscholar.org/83c8/1affaceb4d7da17e5f8ec0fd91c033adb08f.pdf. 
  35. ^ Aberhan, M.; Weidemeyer, S.; Kieesling, W.; Scasso, R.A.; Medina, F.A. (2007). “Faunal evidence for reduced productivity and uncoordinated recovery in Southern Hemisphere Cretaceous-Paleogene boundary sections”. Geology 35 (3): 227–230. Bibcode2007Geo....35..227A. doi:10.1130/G23197A.1. 
  36. ^ Sheehan, Peter M.; Fastovsky, D.E. (1992). “Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, eastern Montana”. Geology 20 (6): 556–560. Bibcode1992Geo....20..556S. doi:10.1130/0091-7613(1992)020<0556:MEOLDV>2.3.CO;2. 
  37. ^ Kauffman, E. (2004). “Mosasaur predation on upper Cretaceous nautiloids and ammonites from the United States Pacific Coast”. PALAIOS 19 (1): 96–100. Bibcode2004Palai..19...96K. doi:10.1669/0883-1351(2004)019<0096:MPOUCN>2.0.CO;2. 
  38. ^ Pospichal, J.J. (1996). “Calcareous nannofossils and clastic sediments at the Cretaceous–Tertiary boundary, northeastern Mexico”. Geology 24 (3): 255–258. Bibcode1996Geo....24..255P. doi:10.1130/0091-7613(1996)024<0255:CNACSA>2.3.CO;2. 
  39. ^ Bown, P (2005). “Selective calcareous nannoplankton survivorship at the Cretaceous–Tertiary boundary”. Geology 33 (8): 653–656. Bibcode2005Geo....33..653B. doi:10.1130/G21566.1. 
  40. ^ Bambach, R.K.; Knoll, A.H.; Wang, S.C. (2004). “Origination, extinction, and mass depletions of marine diversity”. Paleobiology 30 (4): 522–542. doi:10.1666/0094-8373(2004)030<0522:OEAMDO>2.0.CO;2. http://biology.kenyon.edu/courses/biol241/extinction%20and%20marine%20diversity%20banbach%202004.pdf. 
  41. ^ Gedl, P. (2004). “Dinoflagellate cyst record of the deep-sea Cretaceous-Tertiary boundary at Uzgru, Carpathian Mountains, Czech Republic”. Special Publications of the Geological Society of London 230 (1): 257–273. Bibcode2004GSLSP.230..257G. doi:10.1144/GSL.SP.2004.230.01.13. 
  42. ^ MacLeod, N. (1998). “Impacts and marine invertebrate extinctions”. Special Publications of the Geological Society of London 140 (1): 217–246. Bibcode1998GSLSP.140..217M. doi:10.1144/GSL.SP.1998.140.01.16. 
  43. ^ Courtillot, V (1999). Evolutionary Catastrophes: The science of mass extinction. Cambridge, UK: Cambridge University Press. p. 2. ISBN 978-0-521-58392-3. https://books.google.com/books?id=qiegJbafYkUC&pg=PA23 
  44. ^ Arenillas, I; Arz, J.A.; Molina, E.; Dupuis, C. (2000). “An independent test of planktic foraminiferal turnover across the Cretaceous/Paleogene (K/P) boundary at El Kef, Tunisia: Catastrophic mass extinction and possible survivorship”. Micropaleontology 46 (1): 31–49. JSTOR 1486024. 
  45. ^ MacLeod, N (1996). MacLeod, N.; Keller, G.. eds. Cretaceous–Tertiary Mass Extinctions: Biotic and environmental changes. W.W. Norton. pp. 85–138. ISBN 978-0-393-96657-2 
  46. ^ Keller, G.; Adatte, T.; Stinnesbeck, W.; Rebolledo-Vieyra, _; Fucugauchi, J.U.; Kramar, U.; Stüben, D. (2004). “Chicxulub impact predates the K–T boundary mass extinction”. Proceedings of the National Academy of Sciences (Washington, DC) 101 (11): 3753–3758. Bibcode2004PNAS..101.3753K. doi:10.1073/pnas.0400396101. PMC 374316. PMID 15004276. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC374316/. 
  47. ^ “Deep-sea benthic foraminiferal recolonisation following a volcaniclastic event in the lower Campanian of the Scaglia Rossa Formation (Umbria-Marche Basin, central Italy)”. Marine Micropaleontology 44 (1–2): 57–76. (2002). Bibcode2002MarMP..44...57G. doi:10.1016/s0377-8398(01)00037-8.  Retrieved 2007-08-19.
  48. ^ Kuhnt, W.; Collins, E.S. (1996). “8. Cretaceous to Paleogene benthic foraminifers from the Iberia abyssal plain”. Proceedings of the Ocean Drilling Program, Scientific Results. Proceedings of the Ocean Drilling Program 149: 203–216. doi:10.2973/odp.proc.sr.149.254.1996. 
  49. ^ Coles, G.P.; Ayress, M.A.; Whatley, R.C. (1990). “A comparison of North Atlantic and 20 Pacific deep-sea Ostracoda”. In Whatley, R.C.; Maybury, C.. Ostracoda and Global Events. Chapman & Hall. pp. 287–305. ISBN 978-0-442-31167-4 
  50. ^ Brouwers, E.M.; de Deckker, P. (1993). “Late Maastrichtian and Danian Ostracode Faunas from Northern Alaska: Reconstructions of Environment and Paleogeography”. PALAIOS 8 (2): 140–154. Bibcode1993Palai...8..140B. doi:10.2307/3515168. JSTOR 3515168. 
  51. ^ Vescsei, A; Moussavian, E (1997). “Paleocene reefs on the Maiella Platform margin, Italy: An example of the effects of the cretaceous/tertiary boundary events on reefs and carbonate platforms”. Facies 36 (1): 123–139. doi:10.1007/BF02536880. 
  52. ^ Rosen, B R; Turnšek, D (1989). “Extinction patterns and biogeography of scleractinian corals across the Cretaceous/Tertiary boundary”. Memoir of the Association of Australasian Paleontology. Proceedings of the Fifth International Symposium on Fossil Cnidaria including Archaeocyatha and Spongiomorphs (Brisbane, Queensland) (8): 355–370. 
  53. ^ Ward, P.D.; Kennedy, W.J.; MacLeod, K.G.; Mount, J.F. (1991). “Ammonite and inoceramid bivalve extinction patterns in Cretaceous/Tertiary boundary sections of the Biscay region (southwestern France, northern Spain)”. Geology 19 (12): 1181–1184. Bibcode1991Geo....19.1181W. doi:10.1130/0091-7613(1991)019<1181:AAIBEP>2.3.CO;2. 
  54. ^ “Marine Cretaceous-Tertiary boundary section in southwestern South Dakota: Comment and reply”. Geology 30 (10): 954–955. (2002). Bibcode2002Geo....30..954H. doi:10.1130/0091-7613(2002)030<0955:MCTBSI>2.0.CO;2. 
  55. ^ Neraudeau, Didier; Thierry, Jacques; Moreau, Pierre (1 January 1997). “Variation in echinoid biodiversity during the Cenomanian-early Turonian transgressive episode in Charentes (France)”. Bulletin de la Société Géologique de France 168 (1): 51–61. https://pubs.geoscienceworld.org/sgf/bsgf/article-abstract/168/1/51/122879/Variation-in-echinoid-biodiversity-during-the. 
  56. ^ “Geography of end-Cretaceous marine bivalve extinctions”. Science 260 (5110): 971–973. (1993). Bibcode1993Sci...260..971R. doi:10.1126/science.11537491. PMID 11537491. 
  57. ^ MacLeod KG (1994). “Extinction of Inoceramid Bivalves in Maastrichtian Strata of the Bay of Biscay Region of France and Spain”. Journal of Paleontology 68 (5): 1048–1066. doi:10.1017/S0022336000026652. 
  58. ^ a b Kriwet, Jürgen; Benton, Michael J. (2004). “Neoselachian (Chondrichthyes, Elasmobranchii) Diversity across the Cretaceous–Tertiary Boundary”. Palaeogeography, Palaeoclimatology, Palaeoecology 214 (3): 181–194. Bibcode2004PPP...214..181K. doi:10.1016/j.palaeo.2004.02.049. 
  59. ^ Noubhani, Abdelmajid (2010). “The Selachians' faunas of the Moroccan phosphate deposits and the K-T mass extinctions”. Historical Biology 22 (1–3): 71–77. doi:10.1080/08912961003707349. 
  60. ^ Patterson, C. (1993). “Osteichthyes: Teleostei”. In Benton, M.J.. The Fossil Record. 2. Springer. pp. 621–656. ISBN 978-0-412-39380-8 
  61. ^ Zinsmeister, W.J. (1 May 1998). “Discovery of fish mortality horizon at the K–T boundary on Seymour Island: Re-evaluation of events at the end of the Cretaceous”. Journal of Paleontology 72 (3): 556–571. doi:10.1017/S0022336000024331. 
  62. ^ a b c d e f g Robertson, D.S.; McKenna, M.C.; Toon, O.B.; Hope, S.; Lillegraven, J.A. (2004). “Survival in the first hours of the Cenozoic”. GSA Bulletin 116 (5–6): 760–768. Bibcode2004GSAB..116..760R. doi:10.1130/B25402.1. オリジナルの2019-05-07時点におけるアーカイブ。. https://web.archive.org/web/20190507051856/https://pdfs.semanticscholar.org/8d43/36c3d3e40d27390e37941e4affe0cff84bb2.pdf. 
  63. ^ a b Labandeira, Conrad C.; Johnson, Kirk R.; Wilf, Peter (2002). “Impact of the terminal Cretaceous event on plant–insect associations”. Proceedings of the National Academy of Sciences of the United States of America 99 (4): 2061–2066. Bibcode2002PNAS...99.2061L. doi:10.1073/pnas.042492999. PMC 122319. PMID 11854501. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC122319/. 
  64. ^ Wilf, P.; Labandeira, C.C.; Johnson, K.R.; Ellis, B. (2006). “Decoupled plant and insect diversity after the end-Cretaceous extinction”. Science 313 (5790): 1112–1115. Bibcode2006Sci...313.1112W. doi:10.1126/science.1129569. PMID 16931760. 
  65. ^ a b c Vajda, Vivi; Raine, J. Ian; Hollis, Christopher J. (2001). “Indication of global deforestation at the Cretaceous–Tertiary boundary by New Zealand fern spike”. Science 294 (5547): 1700–1702. Bibcode2001Sci...294.1700V. doi:10.1126/science.1064706. PMID 11721051. 
  66. ^ Wilf, P.; Johnson, K. R. (2004). “Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record”. Paleobiology 30 (3): 347–368. doi:10.1666/0094-8373(2004)030<0347:lpeate>2.0.co;2. 
  67. ^ Johnson, K.R.; Hickey, L.J. (1991). Sharpton, V.I.; Ward, P.D.. eds. Global Catastrophes in Earth History: An interdisciplinary conference on impacts, volcanism, and mass mortality. Geological Society of America. ISBN 978-0-8137-2247-4 
  68. ^ Askin, R.A.; Jacobson, S.R. (1996). Keller, G.; MacLeod, N.. eds. Cretaceous–Tertiary Mass Extinctions: Biotic and Environmental Changes. W W Norton. ISBN 978-0-393-96657-2 
  69. ^ Schultz, P.H.; d'Hondt, S. (1996). “Cretaceous–Tertiary (Chicxulub) impact angle and its consequences”. Geology 24 (11): 963–967. Bibcode1996Geo....24..963S. doi:10.1130/0091-7613(1996)024<0963:CTCIAA>2.3.CO;2. 
  70. ^ a b Vajda, Vivi; McLoughlin, Stephen (5 March 2004). “Fungal Proliferation at the Cretaceous-Tertiary Boundary”. Science 303 (5663): 1489. doi:10.1126/science.1093807. PMID 15001770. http://nrm.diva-portal.org/smash/get/diva2:719366/FULLTEXT01. 
  71. ^ Field, Daniel J.; Bercovici, Antoine; Berv, Jacob S.; Dunn, Regan; Fastovsky, David E.; Lyson, Tyler R.; Vajda, Vivi; Gauthier, Jacques A. (May 24, 2018). “Early Evolution of Modern Birds Structured by Global Forest Collapse at the End-Cretaceous Mass Extinction”. Current Biology 28 (11): 1825–1831.e2. doi:10.1016/j.cub.2018.04.062. PMID 29804807. オリジナルのNovember 14, 2021時点におけるアーカイブ。. https://web.archive.org/web/20211114031730/https://www.cell.com/current-biology/fulltext/S0960-9822(18)30534-7?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0960982218305347%3Fshowall%3Dtrue 2021年12月15日閲覧。. 
  72. ^ Fawcett, J. A.; Maere, S.; Van de Peer, Y. (April 2009). “Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event”. Proceedings of the National Academy of Sciences of the United States of America 106 (14): 5737–5742. Bibcode2009PNAS..106.5737F. doi:10.1073/pnas.0900906106. PMC 2667025. PMID 19325131. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2667025/. 
  73. ^ Visscher, H.; Brinkhuis, H.; Dilcher, D. L.; Elsik, W. C.; Eshet, Y.; Looy, C. V.; Rampino, M. R.; Traverse, A. (5 March 1996). “The terminal Paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse.”. Proceedings of the National Academy of Sciences 93 (5): 2155–2158. Bibcode1996PNAS...93.2155V. doi:10.1073/pnas.93.5.2155. PMC 39926. PMID 11607638. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC39926/. 
  74. ^ Archibald, J.D.; Bryant, L.J. (1990). “Differential Cretaceous–Tertiary extinction of nonmarine vertebrates; evidence from northeastern Montana”. In Sharpton, V.L.; Ward, P.D.. Global Catastrophes in Earth History: an Interdisciplinary Conference on Impacts, Volcanism, and Mass Mortality. Special Paper. 247. Geological Society of America. pp. 549–562. doi:10.1130/spe247-p549. ISBN 978-0-8137-2247-4 
  75. ^ Estes, R. (1964). “Fossil vertebrates from the late Cretaceous Lance formation, eastern Wyoming”. University of California Publications, Department of Geological Sciences 49: 1–180. 
  76. ^ Gardner, J. D. (2000). “Albanerpetontid amphibians from the upper Cretaceous (Campanian and Maastrichtian) of North America”. Geodiversitas 22 (3): 349–388. 
  77. ^ Sheehan, P. M.; Fastovsky, D. E. (1992). “Major extinctions of land-dwelling vertebrates at the Cretaceous-Tertiary boundary, Eastern Montana”. Geology 20 (6): 556–560. Bibcode1992Geo....20..556S. doi:10.1130/0091-7613(1992)020<0556:meoldv>2.3.co;2. 
  78. ^ Novacek, M J (1999). “100 million years of land vertebrate evolution: The Cretaceous-early Tertiary transition”. Annals of the Missouri Botanical Garden 86 (2): 230–258. doi:10.2307/2666178. JSTOR 2666178. https://www.biodiversitylibrary.org/part/28619. 
  79. ^ Apesteguía, Sebastián; Novas, Fernando E (2003). “Large Cretaceous sphenodontian from Patagonia provides insight into lepidosaur evolution in Gondwana”. Nature 425 (6958): 609–612. Bibcode2003Natur.425..609A. doi:10.1038/nature01995. PMID 14534584. 
  80. ^ Lutz, D. (2005). Tuatara: A living fossil. DIMI Press. ISBN 978-0-931625-43-5 
  81. ^ Longrich, Nicholas R.; Bhullar, Bhart-Anjan S.; Gauthier, Jacques A. (2012). “Mass extinction of lizards and snakes at the Cretaceous–Paleogene boundary”. Proceedings of the National Academy of Sciences of the United States of America 109 (52): 21396–21401. Bibcode2012PNAS..10921396L. doi:10.1073/pnas.1211526110. PMC 3535637. PMID 23236177. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3535637/. 
  82. ^ Chatterjee, S.; Small, B.J. (1989). “New plesiosaurs from the Upper Cretaceous of Antarctica”. Geological Society of London. Special Publications 47 (1): 197–215. Bibcode1989GSLSP..47..197C. doi:10.1144/GSL.SP.1989.047.01.15. 
  83. ^ O'Keefe, F.R. (2001). “A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia)”. Acta Zoologica Fennica 213: 1–63. 
  84. ^ Fischer, Valentin; Bardet, Nathalie; Benson, Roger B. J.; Arkhangelsky, Maxim S.; Friedman, Matt (2016). “Extinction of fish-shaped marine reptiles associated with reduced evolutionary rates and global environmental volatility”. Nature Communications 7 (1): 10825. Bibcode2016NatCo...710825F. doi:10.1038/ncomms10825. PMC 4786747. PMID 26953824. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4786747/. 
  85. ^ The Great Archosaur Lineage”. University of California Museum of Paleontology. 2015年2月28日時点のオリジナルよりアーカイブ。2022年4月13日閲覧。
  86. ^ Brochu, C.A. (2004). “Calibration age and quartet divergence date estimation”. Evolution 58 (6): 1375–1382. doi:10.1554/03-509. PMID 15266985. 
  87. ^ Jouve, S.; Bardet, N.; Jalil, N-E; Suberbiola, X P; Bouya, B.; Amaghzaz, M. (2008). “The oldest African crocodylian: phylogeny, paleobiogeography, and differential survivorship of marine reptiles through the Cretaceous-Tertiary boundary”. Journal of Vertebrate Paleontology 28 (2): 409–421. doi:10.1671/0272-4634(2008)28[409:TOACPP]2.0.CO;2. 
  88. ^ Company, J.; Ruiz-Omeñaca, J. I.; Pereda Suberbiola, X. (1999). “A long-necked pterosaur (Pterodactyloidea, Azhdarchidae) from the upper Cretaceous of Valencia, Spain”. Geologie en Mijnbouw 78 (3): 319–333. doi:10.1023/A:1003851316054. 
  89. ^ Barrett, P. M.; Butler, R. J.; Edwards, N. P.; Milner, A. R. (2008). “Pterosaur distribution in time and space: an atlas”. Zitteliana 28: 61–107. オリジナルの2017-08-06時点におけるアーカイブ。. https://web.archive.org/web/20170806150333/https://epub.ub.uni-muenchen.de/12007/1/zitteliana_2008_b28_05.pdf 2022年4月13日閲覧。. 
  90. ^ Campos, H. B. N. (July 31, 2021). “A new azhdarchoid pterosaur from the Late Cretaceous Javelina Formation of Texas”. Biologia. doi:10.1007/s11756-021-00841-7. 
  91. ^ Slack, K, E; Jones, C M; Ando, T; Harrison, G L; Fordyce, R E; Arnason, U; Penny, D (2006). “Early Penguin Fossils, Plus Mitochondrial Genomes, Calibrate Avian Evolution”. Molecular Biology and Evolution 23 (6): 1144–1155. doi:10.1093/molbev/msj124. PMID 16533822. 
  92. ^ Penny, D.; Phillips, M.J. (2004). “The rise of birds and mammals: Are microevolutionary processes sufficient for macroevolution?”. Trends in Ecology and Evolution 19 (10): 516–522. doi:10.1016/j.tree.2004.07.015. PMID 16701316. 
  93. ^ Butler, Richard J.; Barrett, Paul M.; Nowbath, Stephen; Upchurch, Paul (2009). “Estimating the effects of sampling biases on pterosaur diversity patterns: Implications for hypotheses of bird / pterosaur competitive replacement”. Paleobiology 35 (3): 432–446. doi:10.1666/0094-8373-35.3.432. 
  94. ^ Prondvai, E.; Bodor, E. R.; Ösi, A. (2014). “Does morphology reflect osteohistology-based ontogeny? A case study of Late Cretaceous pterosaur jaw symphyses from Hungary reveals hidden taxonomic diversity”. Paleobiology 40 (2): 288–321. doi:10.1666/13030. http://real.mtak.hu/21860/1/Prondvai_et_al.2014_reposit1_u_110445.946242.pdf. 
  95. ^ Longrich, N. R.; Martill, D. M.; Andres, B. (2018). “Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary”. PLOS Biology 16 (3): e2001663. doi:10.1371/journal.pbio.2001663. PMC 5849296. PMID 29534059. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5849296/. 
  96. ^ Hou, L.; Martin, M.; Zhou, Z.; Feduccia, A. (1996). “Early Adaptive Radiation of Birds: Evidence from Fossils from Northeastern China”. Science 274 (5290): 1164–1167. Bibcode1996Sci...274.1164H. doi:10.1126/science.274.5290.1164. PMID 8895459. 
  97. ^ Clarke, J.A.; Tambussi, C.P.; Noriega, J.I.; Erickson, G.M.; Ketcham, R.A. (2005). “Definitive fossil evidence for the extant avian radiation in the Cretaceous”. Nature 433 (7023): 305–308. Bibcode2005Natur.433..305C. doi:10.1038/nature03150. PMID 15662422. 
  98. ^ Primitive birds shared dinosaurs' fate”. Science Daily (2011年9月20日). 2011年9月24日時点のオリジナルよりアーカイブ。2022年4月13日閲覧。
  99. ^ Mitchell, K.J.; Llamas, B.; Soubrier, J.; Rawlence, N.J.; Worthy, T.H.; Wood, J.; Lee, M.S.Y.; Cooper, A. (2014). “Ancient DNA reveals elephant birds and kiwi are sister taxa and clarifies ratite bird evolution”. Science 344 (6186): 989–900. Bibcode2014Sci...344..898M. doi:10.1126/science.1251981. hdl:2328/35953. PMID 24855267. 
  100. ^ Yonezawa, Takahiro; Segawa, Takahiro; Mori, Hiroshi; Campos, Paula F.; Hongoh, Yuichi; Endo, Hideki; Akiyoshi, Ayumi; Kohno, Naoki et al. (2017). “Phylogenomics and Morphology of Extinct Paleognaths Reveal the Origin and Evolution of the Ratites”. Current Biology 27 (1): 68–77. doi:10.1016/j.cub.2016.10.029. PMID 27989673. 
  101. ^ a b c d e David, Archibald; Fastovsky, David (2004). “Dinosaur extinction”. In Weishampel, David B.; Dodson, Peter; Osmólska, Halszka. The Dinosauria (2nd ed.). Berkeley: University of California Press. pp. 672–684. ISBN 978-0-520-24209-8. http://www.bio.sdsu.edu/faculty/archibald/ArchFast.pdf 
  102. ^ a b Ocampo, A.; Vajda, V.; Buffetaut, E. (2006). “Unravelling the Cretaceous–Paleogene (K–T) turnover, evidence from flora, fauna and geology in biological processes associated with impact events”. In Cockell, C.; Gilmour, I.; Koeberl, C.. Biological Processes Associated with Impact Events. SpringerLink. pp. 197–219. doi:10.1007/3-540-25736-5_9. ISBN 978-3-540-25735-6. https://archive.org/details/biologicalproces00cock 
  103. ^ Rieraa, V.; Marmib, J.; Omsa, O.; Gomez, B. (March 2010). “Orientated plant fragments revealing tidal palaeocurrents in the Fumanya mudflat (Maastrichtian, southern Pyrenees): Insights in palaeogeographic reconstructions”. Palaeogeography, Palaeoclimatology, Palaeoecology 288 (1–4): 82–92. Bibcode2010PPP...288...82R. doi:10.1016/j.palaeo.2010.01.037. 
  104. ^ le Loeuff, J. (2012). “Paleobiogeography and biodiversity of Late Maastrichtian dinosaurs: How many dinosaur species became extinct at the Cretaceous-Tertiary boundary?”. Bulletin de la Société Géologique de France 183 (6): 547–559. doi:10.2113/gssgfbull.183.6.547. 
  105. ^ Ryan, M.J.; Russell, A.P.; Eberth, D.A.; Currie, P.J. (2001). “The taphonomy of a Centrosaurus (Ornithischia: Ceratopsidae) bone bed from the Dinosaur Park formation (Upper Campanian), Alberta, Canada, with comments on cranial ontogeny”. PALAIOS 16 (5): 482–506. Bibcode2001Palai..16..482R. doi:10.1669/0883-1351(2001)016<0482:ttoaco>2.0.co;2. 
  106. ^ Sloan, R.E.; Rigby, K.; van Valen, L.M.; Gabriel, Diane (1986). “Gradual dinosaur extinction and simultaneous ungulate radiation in the Hell Creek formation”. Science 232 (4750): 629–633. Bibcode1986Sci...232..629S. doi:10.1126/science.232.4750.629. PMID 17781415. 
  107. ^ Fassett, J.E.; Lucas, S.G.; Zielinski, R.A.; Budahn, J.R. (2001). Compelling new evidence for Paleocene dinosaurs in the Ojo Alamo Sandstone San Juan Basin, New Mexico and Colorado, USA (PDF). International Conference on Catastrophic Events and Mass Extinctions: Impacts and Beyond, 9–12 July 2000. Vol. 1053. Vienna, Austria. pp. 45–46. Bibcode:2001caev.conf.3139F. 5 June 2011時点のオリジナルよりアーカイブ (PDF)。2022-04014閲覧 {{cite conference}}: |access-date=の日付が不正です。 (説明)
  108. ^ Sullivan, R.M. (2003). “No Paleocene dinosaurs in the San Juan Basin, New Mexico”. Geological Society of America Abstracts with Programs 35 (5): 15. オリジナルの2011-04-08時点におけるアーカイブ。. https://web.archive.org/web/20110408155457/http://gsa.confex.com/gsa/2003RM/finalprogram/abstract_47695.htm 2007年7月2日閲覧。. 
  109. ^ Evans, Susan E.; Klembara, Jozef (2005). “A choristoderan reptile (Reptilia: Diapsida) from the Lower Miocene of northwest Bohemia (Czech Republic)”. Journal of Vertebrate Paleontology 25 (1): 171–184. doi:10.1671/0272-4634(2005)025[0171:ACRRDF]2.0.CO;2. 
  110. ^ Matsumoto, Ryoko; Evans, Susan E. (November 2015). “Morphology and function of the palatal dentition in Choristodera”. Journal of Anatomy 228 (3): 414–429. doi:10.1111/joa.12414. PMC 5341546. PMID 26573112. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5341546/. 
  111. ^ Gelfo, J.N.; Pascual, R. (2001). Peligrotherium tropicalis (Mammalia, Dryolestida) from the early Paleocene of Patagonia, a survival from a Mesozoic Gondwanan radiation”. Geodiversitas 23: 369–379. オリジナルの2012-02-12時点におけるアーカイブ。. https://web.archive.org/web/20120212193611/http://www.mnhn.fr/publication/geodiv/g01n3a4.pdf. 
  112. ^ Goin, F.J.; Reguero, M.A.; Pascual, R.; von Koenigswald, W.; Woodburne, M.O.; Case, J.A.; Marenssi, S.A.; Vieytes, C. et al. (2006). “First gondwanatherian mammal from Antarctica”. Geological Society, London. Special Publications 258 (1): 135–144. Bibcode2006GSLSP.258..135G. doi:10.1144/GSL.SP.2006.258.01.10. 
  113. ^ McKenna, M.C.; Bell, S.K. (1997). Classification of mammals: Above the species level. Columbia University Press. ISBN 978-0-231-11012-9 
  114. ^ Xijun Ni, Qiang Li, Thomas A. Stidham, Lüzhou Li, Xiaoyu Lu & Jin Meng (2016), “A late Paleocene probable metatherian (?deltatheroidan) survivor of the Cretaceous mass extinction,”Scientific Reports, Volume 6, Article number: 38547. doi:10.1038/srep38547
  115. ^ Wood, D. Joseph (2010). The Extinction of the Multituberculates Outside North America: a Global Approach to Testing the Competition Model (M.S.). The Ohio State University.
  116. ^ Pires, Mathias M.; Rankin, Brian D.; Silvestro, Daniele; Quental, Tiago B. (2018). “Diversification dynamics of mammalian clades during the K–Pg mass extinction”. Biology Letters 14 (9): 20180458. doi:10.1098/rsbl.2018.0458. PMC 6170748. PMID 30258031. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6170748/. 
  117. ^ a b “The delayed rise of present-day mammals”. Nature 446 (7135): 507–512. (2007). Bibcode2007Natur.446..507B. doi:10.1038/nature05634. PMID 17392779. 
  118. ^ a b “Placental mammal diversification and the Cretaceous–Tertiary boundary”. PNAS 100 (3): 1056–1061. (2003). Bibcode2003PNAS..100.1056S. doi:10.1073/pnas.0334222100. PMC 298725. PMID 12552136. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC298725/. 
  119. ^ Dodson, Peter (1996). The Horned Dinosaurs: A Natural History. Princeton, NJ: Princeton University Press. pp. 279–281. ISBN 978-0-691-05900-6. https://archive.org/details/horneddinosaursn00dods_0 
  120. ^ Online guide to the continental Cretaceous–Tertiary boundary in the Raton basin, Colorado and New Mexico”. U.S. Geological Survey (2004年). 2006年9月25日時点のオリジナルよりアーカイブ。2007年7月8日閲覧。
  121. ^ Smathers, G A; Mueller-Dombois D (1974). Invasion and Recovery of Vegetation after a Volcanic Eruption in Hawaii. Scientific Monograph. 5. United States National Park Service. オリジナルの2014-04-03時点におけるアーカイブ。. https://web.archive.org/web/20140403124910/http://www.nps.gov/history/history/online_books/science/5/contents.htm 2007年7月9日閲覧。 
  122. ^ Springtime was the season the dinosaurs died, ancient fish fossils suggest”. サイエンス (2022年2月23日). 2022年4月18日閲覧。
  123. ^ Fossil fish reveal timing of asteroid that killed the dinosaurs”. ネイチャー (2022年2月23日). 2022年4月18日閲覧。
  124. ^ Ouellette, Jennifer (2022年2月23日). “An asteroid killed dinosaurs in spring—which might explain why mammals survived - New study sheds light on why species extinction was so selective after the K-Pg impact.”. Ars Technica. https://arstechnica.com/science/2022/02/fish-fossils-show-asteroid-that-wiped-out-the-dinosaurs-struck-in-the-spring/ 2022年4月18日閲覧。 
  125. ^ a b c d “Meteorite impact and the mass extinction of species at the Cretaceous/Tertiary boundary”. PNAS 95 (19): 11028–11029. (1998). Bibcode1998PNAS...9511028P. doi:10.1073/pnas.95.19.11028. PMC 33889. PMID 9736679. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC33889/. 
  126. ^ a b c “Sudden and Gradual Molluscan Extinctions in the Latest Cretaceous of Western European Tethys”. Science 274 (5291): 1360–1363. (1996). Bibcode1996Sci...274.1360M. doi:10.1126/science.274.5291.1360. PMID 8910273. 
  127. ^ Keller, Gerta (July 2001). “The end-cretaceous mass extinction in the marine realm: Year 2000 assessment”. Planetary and Space Science 49 (8): 817–830. Bibcode2001P&SS...49..817K. doi:10.1016/S0032-0633(01)00032-0. 
  128. ^ Bourgeois, J. (2009). “Chapter 3. Geologic effects and records of tsunamis”. In Robinson, A.R.; Bernard, E.N.. The Sea (Ideas and Observations on Progress in the Study of the Seas). 15: Tsunamis. Boston, MA: Harvard University. ISBN 978-0-674-03173-9. http://faculty.washington.edu/jbourgeo/BourgeoisTheSeaCh3.pdf 2022年4月15日閲覧。 
  129. ^ Lawton, T. F.; Shipley, K. W.; Aschoff, J. L.; Giles, K. A.; Vega, F. J. (2005). “Basinward transport of Chicxulub ejecta by tsunami-induced backflow, La Popa basin, northeastern Mexico, and its implications for distribution of impact-related deposits flanking the Gulf of Mexico”. Geology 33 (2): 81–84. Bibcode2005Geo....33...81L. doi:10.1130/G21057.1. 
  130. ^ Albertão, G. A.; P. P. Martins Jr. (1996). “A possible tsunami deposit at the Cretaceous-Tertiary boundary in Pernambuco, northeastern Brazil”. Sed. Geol. 104 (1–4): 189–201. Bibcode1996SedG..104..189A. doi:10.1016/0037-0738(95)00128-X. http://www.repositorio.ufop.br/handle/123456789/4089. 
  131. ^ Norris, R. D.; Firth, J.; Blusztajn, J. S. & Ravizza, G. (2000). “Mass failure of the North Atlantic margin triggered by the Cretaceous-Paleogene bolide impact”. Geology 28 (12): 1119–1122. Bibcode2000Geo....28.1119N. doi:10.1130/0091-7613(2000)28<1119:MFOTNA>2.0.CO;2. 
  132. ^ Bryant, Edward (June 2014). Tsunami: The Underrated Hazard. Springer. p. 178. ISBN 9783319061337. オリジナルの2019-09-01時点におけるアーカイブ。. https://web.archive.org/web/20190901055132/https://books.google.com/books?id=tOkpBAAAQBAJ&pg=PA178&lpg=PA17 2022年4月15日閲覧。 
  133. ^ Smit, Jan; Montanari, Alessandro; Swinburne, Nicola H.; Alvarez, Walter; Hildebrand, Alan R.; Margolis, Stanley V.; Claeys, Philippe; Lowrie, William et al. (1992). “Tektite-bearing, deep-water clastic unit at the Cretaceous-Tertiary boundary in northeastern Mexico”. Geology 20 (2): 99–103. Bibcode1992Geo....20...99S. doi:10.1130/0091-7613(1992)020<0099:TBDWCU>2.3.CO;2. PMID 11537752. 
  134. ^ Field guide to Cretaceous-tertiary boundary sections in northeastern Mexico. 月惑星研究所. (1994). オリジナルの2019-08-21時点におけるアーカイブ。. https://web.archive.org/web/20190821130759/https://www.lpi.usra.edu/lpi/contribution_docs/LPI-000827.pdf 2022年4月15日閲覧。 
  135. ^ Smit, Jan (1999). “The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta”. Annual Reviews of Earth and Planetary Science 27: 75–113. Bibcode1999AREPS..27...75S. doi:10.1146/annurev.earth.27.1.75. 
  136. ^ Kring, David A. (2007). “The Chicxulub impact event and its environmental consequences at the Cretaceous-Tertiary boundary”. Palaeogeography, Palaeoclimatology, Palaeoecology 255 (1–2): 4–21. doi:10.1016/j.palaeo.2007.02.037. 
  137. ^ Chicxulub impact event”. www.lpi.usra.edu. 2019年7月26日時点のオリジナルよりアーカイブ。2022年4月15日閲覧。
  138. ^ Signor, Philip W., III; Lipps, Jere H. (1982). “Sampling bias, gradual extinction patterns, and catastrophes in the fossil record”. In Silver, L.T.; Schultz, Peter H.. Geological implications of impacts of large asteroids and comets on the Earth. Special Publication 190. Boulder, Colorado: Geological Society of America. pp. 291–296. ISBN 978-0-8137-2190-3. OCLC 4434434112. オリジナルのMay 5, 2016時点におけるアーカイブ。. https://web.archive.org/web/20160505184444/https://books.google.com/books?id=efz87W88HawC&pg=291 2022年4月15日閲覧。 
  139. ^ Mukhopadhyay, Sujoy (2001). “A Short Duration of the Cretaceous-Tertiary Boundary Event: Evidence from Extraterrestrial Helium-3”. Science 291 (5510): 1952–1955. Bibcode2001Sci...291.1952M. doi:10.1126/science.291.5510.1952. PMID 11239153. https://authors.library.caltech.edu/36545/7/Mukhopad3.sup.pdf. 
  140. ^ Clyde, William C.; Ramezani, Jahandar; Johnson, Kirk R.; Bowring, Samuel A.; Jones, Matthew M. (15 October 2016). “Direct high-precision U–Pb geochronology of the end-Cretaceous extinction and calibration of Paleocene astronomical timescales”. Earth and Planetary Science Letters 452: 272–280. Bibcode2016E&PSL.452..272C. doi:10.1016/j.epsl.2016.07.041. 
  141. ^ de Laubenfels, M W (1956). “Dinosaur extinction: One more hypothesis”. Journal of Paleontology 30 (1): 207–218. JSTOR 1300393. 
  142. ^ 天文学辞典 テクタイト”. 日本天文学会. 2022年4月17日時点のオリジナルよりアーカイブ。2022年4月17日閲覧。
  143. ^ Smit J.; Klaver, J. (1981). “Sanidine spherules at the Cretaceous-Tertiary boundary indicate a large impact event”. Nature 292 (5818): 47–49. Bibcode1981Natur.292...47S. doi:10.1038/292047a0. 
  144. ^ Bohor, B. F.; Foord, E. E.; Modreski, P. J.; Triplehorn, D. M. (1984). “Mineralogic evidence for an impact event at the Cretaceous-Tertiary boundary”. Science 224 (4651): 867–9. Bibcode1984Sci...224..867B. doi:10.1126/science.224.4651.867. PMID 17743194. 
  145. ^ Bohor, B. F.; Modreski, P. J.; Foord, E. E. (1987). “Shocked quartz in the Cretaceous-Tertiary boundary clays: Evidence for a global distribution”. Science 236 (4802): 705–709. Bibcode1987Sci...236..705B. doi:10.1126/science.236.4802.705. PMID 17748309. https://zenodo.org/record/1230978. 
  146. ^ Bourgeois, J.; Hansen, T. A.; Wiberg, P. A.; Kauffman, E. G. (1988). “A tsunami deposit at the Cretaceous-Tertiary boundary in Texas”. Science 241 (4865): 567–570. Bibcode1988Sci...241..567B. doi:10.1126/science.241.4865.567. PMID 17774578. 
  147. ^ Pope, K.O.; Ocampo, A.C.; Kinsland, G.L.; Smith, R. (1996). “Surface expression of the Chicxulub crater”. Geology 24 (6): 527–530. Bibcode1996Geo....24..527P. doi:10.1130/0091-7613(1996)024<0527:SEOTCC>2.3.CO;2. PMID 11539331. 
  148. ^ Perlman, David. “Dinosaur extinction battle flares”. オリジナルの2013年2月8日時点におけるアーカイブ。. https://web.archive.org/web/20130208122400/http://www.sfgate.com/science/article/Dinosaur-extinction-battle-flares-4261978.php 2022年4月18日閲覧。 
  149. ^ Bottke, W.F.; Vokrouhlický, D.; Nesvorný, D. (September 2007). “An asteroid breakup 160 Myr ago as the probable source of the K/T impactor”. Nature 449 (7158): 48–53. Bibcode2007Natur.449...48B. doi:10.1038/nature06070. PMID 17805288. 
  150. ^ “New constraints on the asteroid 298 Baptistina, the alleged family member of the K/T impactor”. The Journal of the Royal Astronomical Society of Canada 103 (1): 7–10. (February 2009). arXiv:0811.0171. Bibcode2009JRASC.103....7M. 
  151. ^ Reddy, V.; Emery, J.P.; Gaffey, M.J.; Bottke, W.F.; Cramer, A.; Kelley, M.S. (December 2009). “Composition of 298 Baptistina: Implications for the K/T impactor link”. Meteoritics & Planetary Science 44 (12): 1917–1927. Bibcode2009M&PS...44.1917R. doi:10.1111/j.1945-5100.2009.tb02001.x. 
  152. ^ “NASA's WISE raises doubt about asteroid family believed responsible for dinosaur extinction”. (2011年9月20日). オリジナルの2011年9月23日時点におけるアーカイブ。. https://web.archive.org/web/20110923215602/http://www.sciencedaily.com/releases/2011/09/110919144042.htm 2022年4月18日閲覧。 
  153. ^ Depalma, Robert A.; Smit, Jan; Burnham, David A.; Kuiper, Klaudia; Manning, Phillip L.; Oleinik, Anton; Larson, Peter; Maurrasse, Florentin J. et al. (2019). “A seismically induced onshore surge deposit at the KPG boundary, North Dakota”. Proceedings of the National Academy of Sciences 116 (17): 8190–8199. Bibcode2019PNAS..116.8190D. doi:10.1073/pnas.1817407116. PMC 6486721. PMID 30936306. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6486721/. 
  154. ^ National Natural Landmarks – National Natural Landmarks (U.S. National Park Service)” (英語). www.nps.gov. 2022年4月18日閲覧。 “Year designated: 1966”
  155. ^ Smit, J., et al. (2017) Tanis, a mixed marine-continental event deposit at the KPG Boundary in North Dakota caused by a seiche triggered by seismic waves of the Chicxulub Impact Paper No. 113-15, presented 23 October 2017 at the GSA Annual Meeting, Seattle, Washington, USA.
  156. ^ DePalma, R. et al. (2017) Life after impact: A remarkable mammal burrow from the Chicxulub aftermath in the Hell Creek Formation, North Dakota Paper No. 113-16, presented 23 October 2017 at the GSA Annual Meeting, Seattle, Washington, USA.
  157. ^ Kaskes, P.; Goderis, S.; Belza, J.; Tack, P.; DePalma, R. A.; Smit, J.; Vincze, Laszlo; Vabgaecje, F. et al. (2019). “Caught in amber: Geochemistry and petrography of uniquely preserved Chicxulub microtektites from the Tanis K-Pg site from North Dakota (USA)”. Large Meteorite Impacts VI 2019 (LPI Contrib. No. 2136). 6. Houston, TX: Lunar and Planetary Institute. pp. 1–2. https://cris.vub.be/ws/portalfiles/portal/48767201/5090_Kaskes_et_al._2019_Abstract_Tanis_spherules_FINAL.pdf 2022年4月18日閲覧。 
  158. ^ Barras, Colin (5 April 2019). “Does fossil site record dino-killing impact?”. Science 364 (6435): 10–11. Bibcode2019Sci...364...10B. doi:10.1126/science.364.6435.10. PMID 30948530. 
  159. ^ Robertson, D.S.; Lewis, W.M.; Sheehan, P.M.; Toon, O.B. (2013). “K/Pg extinction: Re-evaluation of the heat/fire hypothesis”. Journal of Geophysical Research: Biogeosciences 118 (1): 329–336. Bibcode2013JGRG..118..329R. doi:10.1002/jgrg.20018. 
  160. ^ Kaiho, Kunio; Oshima, Naga (2017). “Site of asteroid impact changed the history of life on Earth: The low probability of mass extinction”. Scientific Reports 7 (1): Article number 14855. Bibcode2017NatSR...714855K. doi:10.1038/s41598-017-14199-x. PMC 5680197. PMID 29123110. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5680197/. 
  161. ^ Ohno, S. (2014). “Production of sulphate-rich vapour during the Chicxulub impact and implications for ocean acidification”. Nature Geoscience 7 (4): 279–282. Bibcode2014NatGe...7..279O. doi:10.1038/ngeo2095. 
  162. ^ Brugger, Julia; Feulner, Georg; Petri, Stefan (2016). “Baby, it's cold outside: Climate model simulations of the effects of the asteroid impact at the end of the Cretaceous”. Geophysical Research Letters 44 (1): 419–427. Bibcode2017GeoRL..44..419B. doi:10.1002/2016GL072241. 
  163. ^ Vellekoop, J. (2013). “Rapid short-term cooling following the Chicxulub impact at the Cretaceous–Paleogene boundary”. Proceedings of the National Academy of Sciences 111 (21): 7537–7541. Bibcode2014PNAS..111.7537V. doi:10.1073/pnas.1319253111. PMC 4040585. PMID 24821785. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4040585/. 
  164. ^ Pope, K.O.; Baines, K.H.; Ocampo, A.C.; Ivanov, B.A. (1997). “Energy, volatile production, and climatic effects of the Chicxulub Cretaceous/Tertiary impact”. Journal of Geophysical Research 102 (E9): 21645–21664. Bibcode1997JGR...10221645P. doi:10.1029/97JE01743. PMID 11541145. 
  165. ^ “Dinosaur-killing asteroid strike gave rise to Amazon rainforest”. BBC News. (2021年4月2日). https://www.bbc.com/news/science-environment-56617409 2022年4月18日閲覧。 
  166. ^ Carvalho, Mónica R.; Jaramillo, Carlos; Parra, Felipe de la; Caballero-Rodríguez, Dayenari; Herrera, Fabiany; Wing, Scott; Turner, Benjamin L.; D’Apolito, Carlos et al. (2 April 2021). “Extinction at the end-Cretaceous and the origin of modern Neotropical rainforests” (英語). Science 372 (6537): 63–68. Bibcode2021Sci...372...63C. doi:10.1126/science.abf1969. ISSN 0036-8075. PMID 33795451. https://www.researchgate.net/publication/350569900 2021年5月9日閲覧。. 
  167. ^ Hand, Eric (17 November 2016). “Updated: Drilling of dinosaur-killing impact crater explains buried circular hills”. Science. doi:10.1126/science.aaf5684. 
  168. ^ “Chicxulub crater dinosaur extinction”. ニューヨーク・タイムズ (New York, NY). (2016年11月18日). オリジナルの2017年11月9日時点におけるアーカイブ。. https://web.archive.org/web/20171109221221/https://www.nytimes.com/2016/11/18/science/chicxulub-crater-dinosaur-extinction.html 2022年4月19日閲覧。 
  169. ^ Brannen, Peter (2017). The Ends of the World: Volcanic Apocalypses, Lethal Oceans, and Our Quest to Understand Earth's Past Mass Extinctions. Harper Collins. p. 336. ISBN 9780062364807 
  170. ^ “Main Deccan volcanism phase ends near the K–T boundary: Evidence from the Krishna-Godavari Basin, SE India”. Earth and Planetary Science Letters 268 (3–4): 293–311. (2008). Bibcode2008E&PSL.268..293K. doi:10.1016/j.epsl.2008.01.015. 
  171. ^ “Rapid eruption of the Deccan flood basalts at the Cretaceous/Tertiary boundary”. Nature 333 (6176): 841–843. (1988). Bibcode1988Natur.333..841D. doi:10.1038/333841a0. 
  172. ^ Courtillot, Vincent (1990). “A volcanic eruption”. Scientific American 263 (4): 85–92. Bibcode1990SciAm.263d..85C. doi:10.1038/scientificamerican1090-85. PMID 11536474. 
  173. ^ Alvarez, W (1997). T. rex and the Crater of Doom. Princeton University Press. pp. 130–146. ISBN 978-0-691-01630-6. https://archive.org/details/trexcraterofdoo000alva 
  174. ^ Renne, P. R. (2015). “State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact”. Science 350 (6256): 76–78. Bibcode2015Sci...350...76R. doi:10.1126/science.aac7549. PMID 26430116. 
  175. ^ Richards, M. A. (2015). “Triggering of the largest Deccan eruptions by the Chicxulub impact”. Geological Society of America Bulletin 127 (11–12): 1507–1520. Bibcode2015GSAB..127.1507R. doi:10.1130/B31167.1. https://escholarship.org/content/qt86f3521g/qt86f3521g.pdf?t=ph1pq1. 
  176. ^ Mullen L (October 13, 2004). “Debating the Dinosaur Extinction”. Astrobiology Magazine. オリジナルのJune 25, 2012時点におけるアーカイブ。. https://web.archive.org/web/20120625152542/http://www.astrobio.net/exclusive/1243/debating-the-dinosaur-extinction 2012年3月29日閲覧。. 
  177. ^ Mullen L (October 20, 2004). “Multiple impacts”. Astrobiology Magazine. オリジナルのApril 6, 2012時点におけるアーカイブ。. https://web.archive.org/web/20120406162059/http://www.astrobio.net/exclusive/1253/multiple-impacts 2012年3月29日閲覧。. 
  178. ^ Mullen L (November 3, 2004). “Shiva: Another K–T impact?”. Astrobiology Magazine. オリジナルのDecember 11, 2011時点におけるアーカイブ。. https://web.archive.org/web/20111211091219/http://www.astrobio.net/exclusive/1281/shiva-another-k-t-impact 2012年3月29日閲覧。. 
  179. ^ Chatterjee, Sankar (August 1997). “Multiple Impacts at the KT Boundary and the Death of the Dinosaurs”. 30th International Geological Congress. 26. pp. 31–54. ISBN 978-90-6764-254-5. https://books.google.com/books?id=3IORF1Ei3LIC&pg=PA31 
  180. ^ Li, Liangquan; Keller, Gerta (1998). “Abrupt deep-sea warming at the end of the Cretaceous”. Geology 26 (11): 995–998. Bibcode1998Geo....26..995L. doi:10.1130/0091-7613(1998)026<0995:ADSWAT>2.3.CO;2. http://pdfs.semanticscholar.org/9d20/c2a993f61658cb22973f233042b6d19b4ea1.pdf. 
  181. ^ a b Petersen, Sierra V.; Dutton, Andrea; Lohmann, Kyger C. (2016). “End-Cretaceous extinction in Antarctica linked to both Deccan volcanism and meteorite impact via climate change”. Nature Communications 7: 12079. Bibcode2016NatCo...712079P. doi:10.1038/ncomms12079. PMC 4935969. PMID 27377632. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4935969/. 
  182. ^ 二村, 徳宏; 戎崎, 俊一; 丸山, 茂徳 (2018-01-20). “星雲遭遇による白亜紀末の大寒冷化と大量絶滅”. 天文月報 111 (2): 130. Bibcode2013Sci...339..684R. https://www.asj.or.jp/geppou/archive_open/2018_111_02/111-2_130.pdf 2022年4月17日閲覧。. 
  183. ^ Alroy J (May 1998). “Cope's rule and the dynamics of body mass evolution in North American fossil mammals”. Science 280 (5364): 731–4. Bibcode1998Sci...280..731A. doi:10.1126/science.280.5364.731. PMID 9563948. http://doc.rero.ch/record/20309/files/PAL_E4068.pdf. 
  184. ^ Ericson, P G; Anderson, C L; Britton, T (December 2006). “Diversification of Neoaves: integration of molecular sequence data and fossils”. Biol. Lett. 2 (4): 543–7. doi:10.1098/rsbl.2006.0523. PMC 1834003. PMID 17148284. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1834003/. 
  185. ^ Grimaldi, David A. (2007). Evolution of the Insects. Cambridge Univ Pr (E). ISBN 978-0-511-12388-7 


「白亜紀と古第三紀の間の大量絶滅」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  
  •  白亜紀と古第三紀の間の大量絶滅のページへのリンク

辞書ショートカット

すべての辞書の索引

「白亜紀と古第三紀の間の大量絶滅」の関連用語

白亜紀と古第三紀の間の大量絶滅のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



白亜紀と古第三紀の間の大量絶滅のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの白亜紀と古第三紀の間の大量絶滅 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS