vector spaceとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > vector spaceの意味・解説 

ベクトル空間

(vector space から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/05 15:35 UTC 版)

数学、特に線型代数学におけるベクトル空間(ベクトルくうかん、: vector space)、または、線型空間(せんけいくうかん、: linear space)は、ベクトル: vector)と呼ばれる元からなる集まりの成す数学的構造である。

ベクトルには加法wikidataが定義され、またスカラーと呼ばれる数との乗法(スカラー倍英語版、スカラー乗法)を行える。スカラーは実数とすることも多いが、複素数有理数あるいは一般の可換体の元によるスカラー乗法を持つベクトル空間もある。ベクトルの加法とスカラー乗法の演算は、「ベクトル空間の公理」と呼ばれる特定の条件(#定義節を参照)を満足するものでなければならない。ベクトル空間の一つの例は、のような物理量を表現するのに用いられる空間ベクトルの全体である(同じ種類の任意の二つの力は、加え合わせて力の合成と呼ばれる第三の力のベクトルを与える。また、力のベクトルを実数倍したものはまた別の力のベクトルを表す)。同じ調子で、平面や空間での変位を表すベクトルの全体もやはりベクトル空間を成す。

ベクトル空間は線型代数学における主題であり、ベクトル空間はその次元(大雑把にいえばその空間の独立な方向の数を決めるもの)によって特徴づけられる。ベクトル空間は、さらにノルム内積などの追加の構造を持つこともあり、そのようなベクトル空間は解析学において主に関数をベクトルとする無限次元の関数空間の形で自然に生じてくる。解析学的な問題では、ベクトルのが与えられたベクトルに収束するか否かを決定することもできなければならないが、これはベクトル空傍間に追加の構造を考えることで実現される。そのような空間のほとんどは適当な位相空間を備えており、それによって近傍連続といったことを考えることができる。こういた線型位相空間、特にバナッハ空間ヒルベルト空間については、豊かな理論が存在する。

歴史的な視点では、ベクトル空間の概念の萌芽は17世紀の解析幾何学行列線型方程式系の理論、ベクトルの概念などにまで遡れる。現代的な、より抽象的な取扱いが初めて定式化されるのは、19世紀後半、ペアノによるもので、それはユークリッド空間よりも一般の対象が範疇に含まれるものであったが、理論の大半は(直線平面あるいはそれらの高次元での対応物といったような)古典的な幾何学的概念を拡張することに割かれていた。

今日では、ベクトル空間は数学のみならず科学工学においても広く応用される。ベクトル空間は線型方程式系を扱うための適当な概念であり、例えば画像圧縮ルーチンで使われるフーリエ級数のための枠組みを提示したり、あるいは偏微分方程式の解法に用いることのできる環境を提供する。さらには、テンソルのような幾何学的および物理学的な対象を、抽象的に座標に依らない (: coordinate-free) で扱う方法を与えてくれるので、そこからさらに線型化の手法を用いて、多様体の局所的性質を説明することもできるようになる。

ベクトル空間の概念は様々な方法で一般化され、幾何学や抽象代数学のより進んだ概念が導かれる。

導入

ベクトル空間の概念について、特定の二つの場合を例にとって簡単に内容を説明する。

平面上の有向線分

ベクトル空間の簡単な例は、一つの平面上の固定した点を始点とする矢印(有向線分)全ての成す集合で与えられる。これは物理学で速度などを記述するのにもつかわれる。そのような有向線分 vw が与えられたとき、その二つの有向線分が張る平行四辺形にはその対角線にもう一つ、原点を始点とする有向線分が含まれる。この新しい有向線分を、二つの有向線分の v + w と呼ぶ。もう一つの演算は有向線分を伸び縮み(スケール因子)させるもので、任意の正の実数 a が与えられたとき、v と向きは同じで長さだけを a の分だけ拡大 (: dilate) または縮小 (: shrink) した有向線分を、va- av と言う。a が負のときは av を今度は逆方向に伸び縮みさせることで同様に定める。

いくつか実際に図示すれば、例えば a = 2 のとき、得られるベクトル aww と同方向で長さが w の二倍のベクトル (下図、右の赤) であり、この 2w は和 w + w とも等しい。さらに (−1)v = −vv と同じ長さで向きだけが v と逆になる (下図、右の青)。

数の順序対

もう一つ重要な例は、実数 x, y の対によって与えられる(xy の対は並べる順番が重要であり、そのような対を順序対という)。この対を (x, y) と書く。そのような対ふたつの和および実数倍は

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)

および

a (x, y) = (ax, ay)

で定義される。

定義

集合 V が、その上の二項演算 + と、体 FV への作用 をもち、これらが任意の u, v, wV; a, bF[nb 1]に関して次の公理系を満たすとき、三組 (V, +, ◦) は「 F 上のベクトル空間」と定義される[1][2]

公理 条件
加法の結合律
R2 のベクトル v (青) を異なる基底によって表したもの: R2標準基底による v = xe1 + ye2 (黒) と別の斜交基底による v = f1 + f2 (赤)

基底は簡明な方法でベクトル空間の構造を明らかにする。基底とは、適当な添字集合で添字付けられたベクトルの(有限または無限)集合 B = {vi}iI であって、それが全体空間を張るもののうちで極小となるものを言う。この条件は、任意のベクトル v が、基底元の有限線型結合

矢印ベクトル v をその座標 xy で記述することはベクトル空間の同型である

例えば、「平面上の有向線分(矢印)」の成すベクトル空間と「数の順序対」の成すベクトル空間は同型である。つまり、ある(固定された)座標原点を始点とする平面上の有向線分は、図に示すように、線分の x-成分と y-成分を考えることにより、順序対として表すことができる。逆に順序対 (x, y) が与えられてとき、x だけ右に(x が負のときは |x| だけ左に)行って、かつ y だけ上に(y が負のときは |y| だけ下に)行く有向線分として v が得られる。

固定されたベクトル空間の間の線型写像 VW の全体は、それ自体が線型空間を成し、HomF(V, W)L(V, W) などで表される[30]V から係数体 F への線型写像全体の成す空間は、V双対ベクトル空間 V と呼ばれる[31]自然変換 VV∗∗ を通じて、任意のベクトル空間はその二重双対へ埋め込むことができる。この写像が同型となるのは空間が有限次元のときであり、かつその時に限る[32]

V の基底を一つ選ぶと、V の任意の元は基底ベクトルの線型結合として一意的に表されるから、線型写像 f: VW は基底ベクトルの行き先を決めることで完全に決定される[33]dim V = dim W ならば、VW の基底を固定するとき、その間の全単射から V の各基底元を W の対応する基底元へ写すような線型写像が生じるが、これは定義により同型写像となる[34]。従って、二つのベクトル空間が同型となるのは、それらの次元が一致するときであり、逆もまた成り立つ。これは、別な言い方をすれば、任意のベクトル空間はその次元により(違いを除いて)「完全に分類されている」ということである。特に任意の n-次元 F-ベクトル空間 VFn に同型である。しかし、「標準的」あるいはあらかじめ用意された同型というものは存在しない。実際の同型 φ: FnV は、Fn の標準基底を Vφ で写すことにより、V を選ぶことと等価である。適当な基底を選ぶ自由度があることは、無限次元の場合の文脈で特に有効である(後述)。

行列

典型的な行列

行列 (: matrix ) は線型写像の情報を記述するのに有効な概念である[35]。行列は、図のように、スカラーの矩形配列として書かれる。任意の m × n 行列 AFn から Fm への線型写像を

この平行六面体の体積はベクトル r1, r2, r3 の成す 3 × 3 行列の行列式の絶対値に一致する。

正方行列 A行列式 det (A) は、A に対応する線型写像が同型か否かを測るスカラーである(同型となるには、行列式の値が 0 でないことが必要かつ十分である)[37]n × n 実行列に対応する Rn の線型変換が向きを保つには、その行列式が正となることが必要十分である。

固有値・固有ベクトル

自己準同型、即ち線型写像 f: VV は、この場合ベクトル v とその f による像 f(v) とを比較することができるから、特に重要である。

任意の零でないベクトル v が、スカラー λ に対して λv = f(v) を満足するとき、これを f固有値 (: eigenvalue ) λ に属する固有ベクトル (: eigenvector ) という[nb 5][38]。同じことだが、固有ベクトル v は差 f − λ · Id の核の元である(ここで Id恒等写像 VV)。V が有限次元ならば、これは行列式を使って言い換えることができる。つまり、f が固有値 λ を持つことは

R3原点を通る直線 (青細) は線型部分空間である。これは二つの平面 (緑、黄) の交わりである。

ベクトル空間 V の空でない部分集合 W が加法とスカラー乗法の下で閉じている(従ってまた、V の零ベクトルを含む)ならば、V部分空間であるという[40]V の部分空間は、それ自体が(同じ体上の)ベクトル空間を成す。ベクトルからなる集合 S に対して、それを含む部分空間すべての交わりは S線型包S を含む最小の V の部分空間を成す。属する元の言葉で言えば、S の張る空間は S の元の線型結合全体の成す部分空間である[41]

部分空間に相対する概念として、商空間がある[42]。任意の部分空間 WV に対して、(「VW で割った」)商空間 V/W は以下のように定義される。 まず集合として V/W は、vV の任意のベクトルとして v + W = {v + w  |  wW} なる形の集合全てからなる。その二つの元 v1 + W および v2 + W の和は (v1 + v2) + W で、またスカラー倍の積は a(v + W) = (av) + W で与えられる。この定義の鍵は v1 + W = v2 + W となる同値v1v2 との差が W に入ることである[nb 7]。この方法で商空間は、部分空間 W に含まれる情報を「忘却」したものとなる。

線型写像 f: VW ker(f)W の零ベクトル 0 へ写されるベクトル v からなる[43]。核および im(f) = {f(v)  |  vV} はともにそれぞれ V および W の部分空間である[44]。核と像の存在は(固定した体 F)上の加群の圏アーベル圏(つまり、数学的対象とそれらの間の構造を保つ写像の集まり、即ち、であってアーベル群の圏と非常によく似た振る舞いをするもの)を成すことの要件の一部である[45]。これにより、同型定理(線型代数学的な言い方をすれば階数・退化次数の定理

テンソル積の普遍性を表す可換図式

これらの規則は、写像 f: V × WVW; (v, w) ↦ vw が双線型となることを保証するものである。テンソル積の普遍性とは

任意のベクトル空間 X任意の双線型写像 g: V × WX が与えられたとき、写像 u: VWX が一意的に存在して、上記の写像 f との合成 ufg に等しくなるようにすることができる ( u(vw) = g(v, w) )[48]

というものである。テンソル積の普遍性は対象を、その対象からの、あるいはその対象への写像によって間接的に定義するという(進んだ抽象代数学ではよく用いられる)手法の一例である。

付加構造を備えたベクトル空間

線型代数学の観点からは、任意のベクトル空間が(同型を除いて)その次元によって特徴づけられるという意味で、ベクトル空間については完全に分かっている。しかしベクトル空間というものは「本質的に」、函数列が別の函数に収束するか否かという(解析学では重要な)問題について取り扱う枠組みを提供していないし、同様に加法演算が有限項の和のみを許す線型代数学では無限級数を扱うのには適当でない。従って、函数解析学ではベクトル空間に更なる構造を考える必要が求められる。ほとんど同様に、付加的な情報を持つベクトル空間が有効に働く部分を抽象的に見つけだすことで、公理的取扱いからベクトル空間の持つ代数学的に本質的な特徴を浮き彫りにすることができる[要出典]

付加構造の一つの例は、順序集合 で、これによりベクトルの比較が行えるようになる[49]。例えば、実 n-次元空間 Rn は、ベクトルを成分ごとに比較することで順序づけることができる。また、ルベーグ積分は函数を二つの正値函数の差

R2 の「単位球面」はノルム 1 の平面ベクトルからなる。図は、異なる p-ノルムに関する単位球面を p = 1, 2, ∞ の場合に描いたもの。また大きな菱形は 1-ノルムが 2 に等しいような点を描いたものである。

ある種の無限級数の極限の存在を保証する方法の一つは、考える空間を任意のコーシー列が収束するようなものに限って考えることである。そのようなベクトル空間は完備距離空間であるという。大まかに言えば、ベクトル空間が完備というのは必要な極限をすべて含むということである。例えば単位区間 [0, 1] 上の多項式函数全体の成すベクトル空間に一様収束位相を入れたものは完備でない。これは [0, 1] 上の任意の連続函数が、多項式函数列で一様に近似することができるというストーン=ワイエルシュトラスの定理による[55]。対照的に、区間 [0, 1] 上の連続函数全体の成す空間に同じ位相を入れたものは完備になる[56]。ノルムからは、ベクトル列 vnv に収束する必要十分条件を

正弦函数 () の有限和によって、周期函数 () を近似する様子を、初項から 5-項までの和を順に示すことによって示したもの。

完備な内積空間はダフィット・ヒルベルトに因んでヒルベルト空間 (: Hilbert space) と呼ばれる[63]。自乗可積分函数の空間 L2(Ω)

方程式 xy = 1 で与えられる双曲線。この双曲線上の函数の座標環R[x, y] / (xy − 1) で与えられ、R 上無限次元のベクトル空間になる。

一般のベクトル空間は、ベクトルの間の乗法を持たない。二つのベクトルの乗法を定める双線型写像を付加的に備えたベクトル空間は、体上の多元環と言う[71]。主な多元環は、何らかの幾何学的な対象の上の函数の空間から生じる。体に値をとる函数は、点ごとの乗法を持ち、それら函数の全体が多元環を成すのである。例えば、ストーン=ヴァイアシュトラスの定理は、バナッハ空間にも多元環にもなっているバナッハ環において成立する。

可換多元環は一変数または多変数の多項式環を使ってたくさん作れる。可換多元環の乗法は可換かつ結合的である。これらの環およびその剰余環は、それが代数幾何的対象上の函数の環となることから、代数幾何学の基礎を成している[72]

別の重要な例はリー環である。リー環の乗法(x, y の積を [x, y] と書く)は可換でも結合的でもないが、そうなることは制約条件

によって制限されている。リー環の例には、n-次正方行列全体の成すベクトル空間に、行列の交換子 [x, y] = xyyx を積としたものや、R3クロス積を入れたものなどが含まれる。

テンソル代数 T(V) は任意のベクトル空間に積を導入して多元環を得るための形式的な方法である[74]T(V) はベクトル空間としては、単純テンソルあるいは分解可能型テンソルと呼ばれる記号

熱方程式は、冷たい環境におかれた熱源の温度の低下のような、時間とともに散逸する物理的性質を記述したものである。(黄色よりも冷たい領域を表す)

周期関数フーリエ級数を成す三角関数の和に分解することは物理学や工学においてよく用いられる手法である[nb 13][80]となるベクトル空間は、ふつうはヒルベルト空間 L2(0, 2π) であり、函数族 sin mx および cos mx (m は整数) が正規直交基底を与える[81]L2-函数 f のフーリエ展開は

二次元球面のある点における接空間とは、この点で球面に接する無限平面である。

曲面のある点における接平面は、自然に接点を原点と同一視したベクトル空間になる。接平面は接点における曲面の最適線型近似あるいは線型性である[nb 14]。三次元ユークリッド空間の場合でさえ、接平面の基底を指定する自然な方法は点綴的には存在せず、またそれゆえに接平面は、実数ベクトル空間というよりはむしろ抽象ベクトル空間として考えられる。接空間はより高次元の可微分多様体への一般化である[96]

リーマン多様体はその接空間が適当な内積を備えた多様体である[97]。そこから得られるリーマン曲率テンソルは、それ一つでその多様体の全ての曲率を表すことができるもので、一般相対性理論では例えば時空の質量とエネルギー定数を記述するアインシュタインテンソルなどに応用がある[98][99]リー群の接空間は自然にリー環の構造を持ち、コンパクト群の分類に用いることができる[100]

一般化

ベクトル束

メビウスの帯。これは局所的には U × R同相である。

ベクトル束位相空間 X によって連続的に径数付けられたベクトル空間の族である[96]。より明確に言えば、X 上のベクトル束とは、位相空間 E であって、連続写像

R3 内のアフィン平面 (水色): これは二次元の線型部分空間をベクトル x () でずらしたものである。

大雑把に言うと、アフィン空間 (: affine space ) というのはベクトル空間からその原点をわからなくしたものである[105]。より正確には、アフィン空間とは自由かつ推移的なベクトル空間の群作用を備えた集合を言う。特にベクトル空間は、写像

n-次元単体は標準凸集合で、任意の多面体へ写り、また、標準 (n + 1)-次元アフィン超平面(標準アフィン空間)と標準 (n + 1)-次元象限(標準錐体)との交わりになっている。

順序体(特に実数体)上で、凸解析の概念を考えることができる。最も基本的なものは、非負線型結合全体からなる、および和が 1 となる非負線型結合全体からなる凸集合である。凸集合はアフィン空間の公理と錐体の公理を組み合わせたものとして見ることができ、これは凸集合の標準空間である n-単体超平面象限との交わりであることを反映したものになっている。このような空間は特に線型計画問題において用いられる。

普遍代数学の言葉で言えば、ベクトル空間はベクトルの有限和に対応する係数の有限列全体の成す普遍ベクトル空間 K 上の代数であるが、一方アフィン空間はここでいう(和が 1 の有限列全体の成す)普遍アフィン超平面上の代数であり、また錐体は普遍象限上の代数、凸集合は普遍単体上の代数である。これは、「座標に対する(可能な)制限和」を用いて公理を幾何化したものである。

線型代数学における多くの概念は凸解析における対応する概念があって、基本的なものとしては基底や(凸包のような形での)生成概念など、また重要なものとしては(双対多角形双対錐と極錐双対問題のような)双対性などが含まれる。しかし線型代数学において任意のベクトル空間やアフィン空間が標準空間に同型となるのとは異なり、任意の凸集合や錐体が単体や象限に同型となるわけではない。むしろ単体から多面体の上への写像が一般化された重心座標系英語版によって常に存在し、またその双対写像として多面体から(面の数と等しい次元の)象限の中への写像がスラック変数英語版によって存在するが、これらが同型となることは稀である(ほとんどの多面体は単体でも象限でもない)。

脚注

注釈

  1. ^ ここではベクトルをスカラーから区別するために、ベクトルは太字で表す。あるいは、特に物理学で、矢印を上に載せる記法も広く用いられる。「ベクトルをラテンアルファベットで表し、スカラーはグリークアルファベット(ギリシャ文字)で表す」などの流儀や、場合によってはまったく文字種の区別をしないこともある。
  2. ^ この公理は演算の結合性を仮定するものではない。ここでは二種類の乗法、つまりスカラーの乗法 bv と体の乗法 ab との関係性を考えているからである。
  3. ^ 文献によっては(例えば Brown 1991係数体RC に制限するものあるが、理論の大部分は変更なしに任意の体上で成り立つものである
  4. ^ 例えば、(無数に存在する)区間の指示函数はどれも線型独立である。
  5. ^ この術語は、「自身の」とか「固有の」という意味のドイツ語eigen“ に由来する。
  6. ^ Roman 2005, p. 140, ch. 8. ジョルダン・シュバレー分解英語版も参照。
  7. ^ 書籍によっては(Roman 2005など)この同値関係から話を始めて、それを使って V/W の具体形を導き出す形をとるものもある
  8. ^ この仮定からは、得られる位相が一様構造を持つことが導かれる。Bourbaki 1989, ch. II
  9. ^ |•|p に関する三角不等式はミンコフスキーの不等式から得られる。技術的な理由から、この文脈ではほとんど至る所一致する函数は互いに同一視する。こうすれば上記の「ノルム」は半ノルムなだけでなく本当にノルムを与える。
  10. ^ L2 に属する多くの函数はルベーグ測度が有界でなく、古典的なリーマン積分では積分することができない。故にリーマン可積分函数の空間は L2-ノルムに関して完備にならず、また それらに対する直交分解も適用できない。これはルベーグ積分の優位性を示すものである」Dudley 1989, p. 125, sect. 5.3
  11. ^ p ≠ 2 のとき Lp(Ω) はヒルベルト空間でない。
  12. ^ ヒルベルト空間の基底というのは、既に述べた線型代数学的な意味での基底と同じものを意味しない。区別のためには、後者はハメル基底と呼ばれる。
  13. ^ フーリエ級数は周期的だが、この手法は任意の区間上の L2-函数に対して、函数を区間の外側へ周期的に延長することによって適用できる。Kreyszig 1988, p. 601
  14. ^ これは BSE-3 2001 が言うには、接点 P を通る平面であって、曲面上の点 P1 とこの平面との距離が、曲面に沿って P1P に近づけた極限での P1P との距離よりも無限に小さいようなものである。
  15. ^ つまり、π−1(U) から V × U への準同型で、その制限がファイバーの間の同型となるものが存在する。
  16. ^ S1 の接束のような線束が自明となる必要十分条件は、至る所消えていない切断が存在することである(Husemoller 1994, Corollary 8.3 を参照)。接束の切断というのは、ベクトル場に他ならない。

出典

  1. ^ Roman 2005, p. 27, ch. 1.
  2. ^ “ベクトル空間とは、集合 V と次の公理 (A1)-(A4) と (M1)-(M4) を満たす写像 +: V × VV, ◦: R × VV からなる三組 (V, +, ◦) である。” 名古屋大学『線形代数学 IⅠ 授業1: ベクトル空間』2014年https://www.math.nagoya-u.ac.jp/~larsh/teaching/F2014_LA/lecture1.pdf 
  3. ^ van der Waerden 1993, Ch. 19.
  4. ^ Bourbaki 1998, Section II.1.1. ブルバキ群準同型 f(a) を「相似」(: homothety ) と総称している。
  5. ^ Bourbaki 1969, pp. 78–91, ch. « Algèbre linéaire et algèbre multilinéaire ».
  6. ^ Bolzano 1804.
  7. ^ Möbius 1827.
  8. ^ Hamilton 1853.
  9. ^ Grassmann 2000.
  10. ^ Peano 1888, ch. IX.
  11. ^ Banach 1922.
  12. ^ Dorier 1995; Moore 1995
  13. ^ Lang 1987, ch. I.1.
  14. ^ Lang 2002, ch. V.1.
  15. ^ 例えば Lang 1993, p. 335, ch. XII.3.
  16. ^ Lang 1987, ch. IX.1.
  17. ^ Lang 1987, ch. VI.3..
  18. ^ “ベクトル空間 V が V の有限個のベクトルの組で生成されるか, または {0} のとき, V は 有限次元 (又は有限生成) であるといい” 東京工業大学『基底の存在と次元』2013年http://www.ocw.titech.ac.jp/?q=201321151&sort=date 
  19. ^ “有限次元 ... そうでないとき 無限次元 であるという” 東京工業大学『基底の存在と次元』2013年http://www.ocw.titech.ac.jp/?q=201321151&sort=date 
  20. ^ Lang 1987, pp. 47–48, ch. II.2..
  21. ^ Roman 2005, p. 43, Theorem 1.9.
  22. ^ Blass 1984.
  23. ^ Halpern 1966, pp. 670–673.
  24. ^ Artin 1991, Theorem 3.3.13.
  25. ^ Braun 1993, p. 291, Th. 3.4.5.
  26. ^ Stewart 1975, p. 52, Proposition 4.3.
  27. ^ Stewart 1975, p. 74, Theorem 6.5.
  28. ^ Roman 2005, p. 45, ch. 2.
  29. ^ Lang 1987, p. 106, ch. IV.4, Corollary.
  30. ^ Lang 1987, Example IV.2.6.
  31. ^ Lang 1987, ch. VI.6.
  32. ^ Halmos 1974, p. 28, Ex. 9.
  33. ^ Lang 1987, p. 95, Theorem IV.2.1.
  34. ^ Roman 2005, p. 49, Th. 2.5, 2.6.
  35. ^ Lang 1987, ch. V.1.
  36. ^ Lang 1987, p. 106, ch. V.3., Corollary.
  37. ^ Lang 1987, p. 198, Theorem VII.9.8.
  38. ^ Roman 2005, pp. 135–156, ch. 8.
  39. ^ Lang 1987, ch. IX.4.
  40. ^ Roman 2005, p. 29, ch. 1.
  41. ^ Roman 2005, p. 35, ch. 1.
  42. ^ Roman 2005, p. 64, ch. 3.
  43. ^ Lang 1987, ch. IV.3..
  44. ^ Roman 2005, p. 48, ch. 2.
  45. ^ Mac Lane 1998.
  46. ^ Roman 2005, pp. 31–32, ch. 1.
  47. ^ Lang 2002, ch. XVI.1.
  48. ^ Roman 2005, Th. 14.3. 米田の補題も参照。
  49. ^ Schaefer & Wolff 1999, pp. 204–205.
  50. ^ Bourbaki 2004, p. 48, ch. 2.
  51. ^ Roman 2005, ch. 9.
  52. ^ Naber 2003, ch. 1.2.
  53. ^ Treves 1967.
  54. ^ Bourbaki 1987.
  55. ^ Kreyszig 1989, §4.11-5.
  56. ^ Kreyszig 1989, §1.5-5.
  57. ^ Choquet 1966, Proposition III.7.2.
  58. ^ Treves 1967, pp. 34–36.
  59. ^ Lang 1983, p. 69, Cor. 4.1.2.
  60. ^ Treves 1967, ch. 11.
  61. ^ Treves 1967, p. 102, Theorem 11.2.
  62. ^ Evans 1998, ch. 5.
  63. ^ Treves 1967, ch. 12.
  64. ^ Dennery & Krzywicki 1996, p. 190.
  65. ^ Lang 1993, p. 349, Th. XIII.6.
  66. ^ Lang 1993, Th. III.1.1.
  67. ^ Choquet 1966, Lemma III.16.11.
  68. ^ Kreyszig 1999, Chapter 11.
  69. ^ Griffiths 1995, Chapter 1.
  70. ^ Lang 1993, ch. XVII.3.
  71. ^ Lang 2002, p. 121, ch. III.1.
  72. ^ Eisenbud 1995, ch. 1.6.
  73. ^ Varadarajan 1974.
  74. ^ Lang 2002, ch. XVI.7.
  75. ^ Lang 2002, ch. XVI.8.
  76. ^ Luenberger 1997, Section 7.13.
  77. ^ representation theory および群論を参照。
  78. ^ Lang 1993, Ch. XI.1.
  79. ^ Evans 1998, Th. 6.2.1.
  80. ^ Folland 1992, p. 349 ff.
  81. ^ Gasquet & Witomski 1999, p. 150.
  82. ^ a b Gasquet & Witomski 1999, §4.5.
  83. ^ Gasquet & Witomski 1999, p. 57.
  84. ^ Loomis 1953, Ch. VII.
  85. ^ Ashcroft & Mermin 1976, Ch. 5.
  86. ^ Kreyszig 1988, p. 667.
  87. ^ Fourier 1822.
  88. ^ Gasquet & Witomski 1999, p. 67.
  89. ^ Ifeachor & Jervis 2002, pp. 3–4, 11.
  90. ^ Wallace 1992.
  91. ^ Ifeachor & Jervis 2002, p. 132.
  92. ^ Gasquet & Witomski 1999, §10.2.
  93. ^ Ifeachor & Jervis 2002, pp. 307–310.
  94. ^ Gasquet & Witomski 1999, §10.3.
  95. ^ Schönhage & Strassen 1971.
  96. ^ a b Spivak 1999, ch. 3.
  97. ^ Jost 2005. ローレンツ多様体も参照。
  98. ^ Misner, Thorne & Wheeler 1973, ch. 1.8.7, p. 222 and ch. 2.13.5, p. 325.
  99. ^ Jost 2005, ch. 3.1.
  100. ^ Varadarajan 1974, ch. 4.3, Theorem 4.3.27.
  101. ^ Kreyszig 1991, p. 108, §34.
  102. ^ Eisenberg & Guy 1979.
  103. ^ Atiyah 1989.
  104. ^ Artin 1991, ch. 12.
  105. ^ Meyer 2000, p. 436, Example 5.13.5.
  106. ^ Meyer 2000, p. 442, Exercise 5.13.15–17.
  107. ^ Coxeter 1987.

参考文献

線型代数学に関するもの

解析学に関するもの

歴史に関するもの

発展的話題に関するもの

関連項目

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「vector space」の関連用語

vector spaceのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



vector spaceのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのベクトル空間 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS