凸集合とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 高等数学 > 集合 > 凸集合の意味・解説 

凸集合

読み方とつしゅうごう
【英】:convex set

ベクトル空間部分集合 S\,次の条件を満たすもの.


x, y \in S,  \alpha \in (0,1) 
 \Longrightarrow  \alpha x + (1-\alpha) y \in S
\,

有限個の半空間の共通部分として表される凸集合を特に凸多面体という. 凸集合や凸多面体線形計画をはじめ, 数理計画様々な分野において最も基本的な役割を果たす.


凸集合

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/10/18 07:12 UTC 版)

円板のように見える凸集合、(緑色)の凸集合は xy を繋ぐ(黒色)の直線部分を含んでいる。凸集合の内部に直線の部分の全体が含まれる。
ブーメランのように見える非凸集合、xy を繋ぐ(黒色)の直線の一部が(緑色)の非凸集合の外側へはみ出ている。

ユークリッド空間における物体が(とつ、: convex)であるとは、その物体に含まれる任意の二点に対し、それら二点を結ぶ線分上の任意の点がまたその物体に含まれることを言う。例えば中身のつまった立方体は凸であるが、例えば三日月形のように窪みや凹みのあるものは何れも凸でない。凸曲線英語版は凸集合の境界を成す。

凸集合の概念は後で述べるとおり他の空間へも一般化することができる。

ベクトル空間内の凸集合

函数が凸であることと、函数のグラフの(緑色の)領域が函数のグラフの上にあるような函数は(下に)凸である。

S実数体(あるいはより一般に適当な順序体)上のベクトル空間とする。ユークリッド空間はその例である。S 内の集合 Cであるとは、任意の x, yC および任意の t[0, 1] に対し、点 (1 − t)x + ty もまた C に属することをいう。即ち、xy とを結ぶ線分上の各点が C に属する[1]。これにより、または複素位相線型空間における凸集合は弧状連結、したがって連結であることが従う。 さらに、C が狭義凸 (strictly convex) であるとは、xy とを結ぶ線分上の各点が端点を除き C内部に含まれるときにいう。

集合 C絶対凸とは、それが凸かつ均衡であるときにいう。

実数全体の成す集合 R の凸部分集合とは、単に R の区間のことである。ユークリッド平面の凸部分集合の例には、中身のつまった正多角形、中身のつまった三角形、中身のつまった三角形の交わり、などが挙げられる。三次元ユークリッド空間の凸部分集合の例にはアルキメデスの立体プラトンの立体などが挙げられる。ケプラー・ポアンソ多面体は非凸集合の例である。

凹集合

凸でない集合は非凸集合 (non-convex set) と言う。凸多角形でない多角形凹多角形とも呼ばれ[2]:130、文献によってはより一般に非凸集合をあらわすのに凹集合 (concave set) という語を使用することもある[3]が、普通はそのような言い方は避けられる[注釈 1][注釈 2]

性質

Sn-次元空間内の凸集合ならば、任意 r-個 (r > 1) の n-次元ベクトル u1, …, urS と任意の非負数 λ1, …, λrλ1 + ⋯ + λr = 1 を満たすものに対し

集合のミンコフスキー和: 正方形 Q1 = [0,1]2, Q2 = [1,2]2和集合 Q1 + Q2 = [1,3]2.

実線型空間において、二つの空でない集合 S1, S2 のミンコフスキー和 S1 + S2 は、加えられる各集合の元ごとの和の集合




凸集合と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「凸集合」の関連用語

凸集合のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



凸集合のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
日本オペレーションズ・リサーチ学会日本オペレーションズ・リサーチ学会
Copyright (C) 2025 (社)日本オペレーションズ・リサーチ学会 All rights reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの凸集合 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS