凸関数


英: convex function)とは、ある区間で定義された実数値関数 f で、区間内の任意の 2 点 x , y と開区間 (0, 1) 内の任意の t に対して
(とつかんすう、経済学においては、曲線が原点に向かって弓なりに突き出した形になっていることを原点に対して凸[10]、または原点に向かって凸[11]と呼ぶことがある。
脚注
- ^ 英: downward-convex function
- ^ Rockafellar & Wets 1998, Proposition 2.4 (convexity of epigraph).
- ^ Rockafellar & Wets 1998, Definition 2.1 (convex sets and convex functions).
- ^ 英: concave function
- ^ Rockafellar 1977, Theorem 25.3.
- ^ アルティン 2002, p. 9.
- ^ Rockafellar & Wets 1998, Theorem 2.6 (characteristics of convex optimization).
- ^ アルティン 2002, p. 12.
- ^ Hörmander 2007, p. 2.
- ^ 芦谷 (2009)、p. 51。
- ^ 神部、寶多、濱田 (2006)、p. 99。
参考文献
- E. アルティン『ガンマ関数入門』日本評論社、2002年。ISBN 4-535-60846-6。
- 芦谷政浩『ミクロ経済学』有斐閣、2009年。ISBN 978-4-641-16350-8。
- 神戸伸輔; 寶多康弘; 濱田弘潤『ミクロ経済学をつかむ』有斐閣、2006年。ISBN 4-641-17700-7。
- Hörmander, L. (2007) [1994]. Notions of Convexity. Modern Birkhäuser Classics. Birkhäuser. ISBN 978-0-8176-4584-7. MR2311920. Zbl 1108.32001
- Rockafellar, R. Tyrrell (1977). Convex analysis. Princeton Landmarks in Mathematics. Princeton University Press. ISBN 0-691-01586-4. MR1451876. Zbl 0932.90001
- Rockafellar, R. Tyrrell; Wets, Roger J.-B. (1998). Variational analysis. Grundlehren der Mathematischen Wissenschaften. 317. Springer-Verlag. ISBN 3-540-62772-3. MR1491362. Zbl 0888.49001
関連項目
- 凸函数のページへのリンク