可微分多様体とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 可微分多様体の意味・解説 

可微分多様体

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/29 05:35 UTC 版)

地球の座標近傍の微分可能でないアトラス。アトラスが微分可能でないとき微積分の結果は座標近傍間で両立可能とは限らない。北回帰線は真ん中の座標近傍では滑らかな曲線であるが、一方左の座標近傍では鋭い角を持つ。可微分多様体の概念は座標近傍の間の変換をする関数が微分可能であることを要求することによって多様体の概念を洗練する。

数学において、可微分多様体(かびぶんたようたい、: differentiable manifold)、あるいは微分可能多様体(びぶんかのうたようたい)は、局所的に十分線型空間に似ており微積分ができるような多様体である。任意の多様体は、チャート(座標近傍、局所座標)の集まり、アトラス(座標近傍系、局所座標系)、によって記述することができる。各座標近傍は微積分の通常のルールが適用する線型空間の中にあるから、各々のチャートの中で考えるときには微積分学のアイデアを適用できる。チャートが適切に両立可能であれば(すなわち1つのチャートから別のチャートへの変換が微分可能であれば)、1つのチャートでなされた計算は任意の他の微分可能なチャートにおいても有効である。

フォーマルに言えば、可微分多様体は大域的に定義された可微分構造英語版を持つ位相多様体である。任意の位相多様体にはアトラスの同相写像と線型空間上の標準的な微分構造を用いて局所的に微分構造を与えることができる。同相写像によって誘導された局所座標系上の大域的な微分構造を誘導するためには、アトラスのチャートの共通部分上での合成が対応する線型空間上の微分可能な関数でなければならない。言い換えると、チャートの定義域が重なっているところでは、各チャートによって定義された座標はアトラスのすべてのチャートによって定義された座標に関して微分可能であることが要求される。様々なチャートによって定義された座標を互いに結びつける写像を変換関数 (transition map/遷移写像/座標変換) と呼ぶ。

微分可能性は文脈によって連続微分可能k 回微分可能、滑らか正則といった異なる意味を持つ。さらに、抽象的な空間にそのような可微分構造を誘導できることによって微分可能性の定義を大域的な座標系なしの空間に拡張することができる。微分構造によって大域的に微分可能な接空間、微分可能な関数、微分可能なテンソル場ベクトル場を定義することができる。可微分多様体は物理においても非常に重要である。特別な種類の可微分多様体は古典力学一般相対論ヤン・ミルズ理論といった物理理論の基礎をなす。可微分多様体に対して微積分を展開することが可能である。これによってexterior calculus(外微分法/外微分学)のような数学的機構が導かれる。可微分多様体上の微積分の研究は微分幾何学と呼ばれる。

歴史

はっきりした分野としての微分幾何学の出現は一般にカール・フリードリヒ・ガウスベルンハルト・リーマンによるものとされている。リーマンはゲッティンゲン大学の有名な教授就任講演[1] で初めて多様体を記述した。彼は多様体のアイデアを与えられた対象を新しい方向に変える直観的な過程によって動機付け、続くフォーマルな発展において座標系とチャートの役割を先見の明を持って記述した:

Having constructed the notion of a manifoldness of n dimensions, and found that its true character consists in the property that the determination of position in it may be reduced to n determinations of magnitude, ...– B. Riemann

ジェームズ・クラーク・マクスウェル[2] のような物理学者と数学者グレゴリオ・リッチ=クルバストロ (Gregorio Ricci-Curbastro) とトゥーリオ・レヴィ=チヴィタ (Tullio Levi-Civita)[3] の仕事はテンソル解析の発展と内在的な幾何学的性質を座標変換で不変な性質と同一視する共変性(en:general covariance)の概念に導いた。これらのアイデアはアインシュタイン一般相対性理論とその根本にある等価原理に重要な応用を見つけた。2次元多様体の現代的な定義はヘルマン・ワイル (Hermann Weyl) によってリーマン面に関する 1913 年の本において与えられた[4]アトラスのことばによる多様体の広く受け入れられている一般的な定義はハスラー・ホイットニーによる[5]

定義

位相多様体とは、チャートと呼ばれる同相写像の集まりアトラス によって線型空間に局所的に同相な第二可算ハウスドルフ空間である。1 つのチャートの、別のチャートの逆写像との合成は、変換関数と呼ばれる関数であり、線型空間の開部分集合から線型空間の別の開部分集合の上への同相写像を定義する。これによって「空間の断片を貼り合わせて多様体を作る」という概念が定義される――作られた多様体はまたどのように貼り合わせられたかのデータも持っている。しかしながら、異なるアトラス(貼り合わせ)から「同じ」多様体が作られるかもしれない。多様体は好みのアトラスで来ない。そして、したがって、位相多様体はアトラスの同値類とともに上のような空間と定義される。アトラスの同値性は以下で定義する。

変換関数にどれだけの微分可能性を要求するかに従って可微分多様体の異なるタイプがある。以下はいくつかの一般的な例である。

  • 可微分多様体 (differentiable manifold) とは、変換関数がすべて微分可能なアトラスの同値類を伴った位相多様体である。より広いことばでは、Ck 級多様体 (Ck-manifold) は変換関数がすべて k 回連続微分可能なアトラスを持つ位相多様体である。
  • 滑らかな多様体 (smooth manifold) あるいは C 級多様体 (C-manifold) とは、すべての変換関数が滑らかな可微分多様体である。つまり、すべての階数の微分が存在する。なので滑らかな多様体はすべての k に対して Ck 級多様体である。そのようなアトラスの同値類は滑らかな構造英語版と呼ばれる。
  • 解析的多様体 (analytic manifold) あるいは Cω 級多様体 (Cω-manifold) とは、各変換関数が解析的という追加の条件を持った滑らかな多様体である。つまり、各変換関数のテイラー展開がある開球上絶対収束しその関数に等しい。
  • 複素多様体 (complex manifold) は複素数体上のユークリッド空間をモデルにしすべての変換関数が正則な位相空間である。

Ck アトラスの有意義な概念はあるが、C0 (連続写像: 位相多様体)と C (滑らかな写像: 滑らかな多様体)より他に Ck 多様体の異なる概念は存在しない、なぜならば k > 0 のすべての Ck 構造に対して、Ck 同値な C 構造が一意的に存在する(すべての Ck 構造は C 構造に一意的に滑らかにできる)からである。これはホイットニー (Whitney)の結果である[5]。実は、すべての Ck 構造は Cω 構造に一意的に滑らか化できる。さらに、1つの C アトラスに同値な 2 つの Ck アトラスは Ck アトラスとして同値なので、2 つの相異なる Ck アトラスは衝突しない。詳細は Differential structure: Existence and uniqueness theorems を参照。したがって「可微分多様体」と「滑らかな多様体」という用語を入れ替え可能な同義語として使う。これは異なる k に対して意味のある違いのある Ck 写像とは非常に対照的である。例えば、ナッシュの埋め込み定理は任意の多様体はユークリッド空間 RN に等長埋め込みできると述べている。ここで N は、任意の 1 ≤ k ≤ ∞ に対して十分大きい N が存在するのであるが、Nk に依存する。

一方、複素多様体は著しい制限を受けている。例として、周の定理は任意の射影複素多様体は実は射影代数多様体であると述べている。代数的な構造を持っているのである。

アトラス

Charts on a manifold

位相空間 X 上のアトラスチャートと呼ばれる対の集まり {(Uαα)} である、ここで UαX覆う開集合であり、各添え字 α に対して

この節の加筆が望まれています。 2008年6月

接束

ある点の接空間はその点におけるあらゆる方向微分からなり、多様体と同じ次元 n を持つ。その点に局所的な(非特異)座標 xk の集合に対して、座標微分




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「可微分多様体」の関連用語

可微分多様体のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



可微分多様体のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの可微分多様体 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS