射影多様体

代数幾何学において、代数閉体 k 上の射影多様体(しゃえいたようたい、英: projective variety)とは、k 上の(n 次元)射影空間 Pn の部分集合であって、素イデアルを生成する k 係数 n + 1 変数斉次多項式の有限族の零点集合として書けるものをいう。そのようなイデアルは多様体の定義イデアルと呼ばれる。あるいは同じことだが、代数多様体が射影的であるとは、Pn のザリスキ閉部分多様体として埋め込めるときにいう。
1次元の射影多様体は射影曲線と呼ばれ、2次元だと射影曲面、余次元 1 だと射影超曲面と呼ばれる。射影超曲面は単独の斉次式の零点集合である。
射影多様体 X が斉次素イデアル I によって定義されているとき、商環
- 射影代数多様体のページへのリンク