スキーム論へ向けて
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2017/05/23 00:10 UTC 版)
上の節一般の代数多様体で与えた定義は自然ではあるが、いくつか不満足な点がある。 ひとつは、定義に現れたアフィン代数多様体による「代数的チャート」の定義である。多様体の場合とは異なり、アフィン代数多様体と同相な2つの開集合の交わりでの貼り合わせを、そこに含まれる任意のアフィン開部分多様体に制限して定義しなければならなかった。これは、前節でも出てきたアフィン代数多様体の開部分集合でアフィン代数多様体にはならないものを定義域に持つ代数多様体の射が直接定義できない事に起因している(代数多様体上の正則関数(多項式関数)の定義の先天的非局所性)。シャファレビッチの本の第1巻(参考文献参照)では、この煩雑さを回避するために準射影代数多様体をそこで定義される代数多様体の最も広いクラスとして取っている。確かに準射影代数多様体はアフィン代数多様体を含む代数多様体の広いクラスであるが、モイシェゾン多様体のように、準射影代数多様体にならない重要な代数多様体が存在する事から、抽象的な貼り合わせによる代数多様体の定義は避けて通る事が出来ない。 もう一つは、代数多様体を定義する体 k の取り方である。上記の議論では常に k は代数的に閉を仮定してきた。これは、ヒルベルトの零点定理が理論の構成の鍵になっていたからである。例えば、実数体上のアフィン平面 A R 2 {\displaystyle \mathbb {A} _{\mathbb {R} }^{2}} で、多項式 f ( x 1 , x 2 ) = x 1 2 + x 2 2 + 1 {\displaystyle f(x_{1},x_{2})=x_{1}^{2}+x_{2}^{2}+1} で定義されるアフィン代数的集合 V = V(f) は空集合である。従って、I(V) は多項式環全体となり、座標環は 0-環になってしまう。しかし、方程式を定数 t によって f ( x 1 , x 2 ) = x 1 2 + x 2 2 + t {\displaystyle f(x_{1},x_{2})=x_{1}^{2}+x_{2}^{2}+t} と変形すると、t が負ならば A(V) = k[x1, x2]/(f) が成り立つので、代数的観点から見て、t が正の時も座標環 A(V) は k[x1, x2]/(f) なるべきである。これは、ヒルベルトの零点定理が成り立たないために起こる現象である。代数的閉でない体上では、「方程式の性質を十分に反映するには点が不足している」のである。 もう一度 k が代数的閉体である状況に戻ってアフィン代数多様体について反省すると、ヒルベルトの零点定理は、多項式の連立方程式系で定まる点集合の幾何学的(集合論的)情報は、その多項式系が生成するイデアルから定まる座標環の環論的情報と等価(圏同値)であることを意味している。代数的閉でない体上では「点が足りない」ために点集合としての代数的集合は十分な情報を持たないが、座標環は純代数的に定義できるので、体が代数的閉であるか否かにかかわらず多項式系の情報を正しく反映する。 以上のような状況から、グロタンディークは、点集合としての代数的集合を環のスペクトラムとよばれる、環の素イデアル全体のなす位相空間に置き換えることによって、閉体上の有限生成整域だけでなく、任意の可換環に対して代数幾何学の対象となりうる図形を定義した(アフィンスキーム)。一般のスキームはアフィンスキームの貼り合わせとして定義される。アフィンスキーム上の関数(すなわちもとの可換環の元)はアプリオリには局所的に定義されたものではないが、局所化の理論を用いて可換環の層を対応させ、アフィンスキームの貼り合わせである一般のスキームを環付き空間として定義する多変数複素解析のアイデアが用いられた。このことにより、代数幾何学の幾何学的アイデアが整数論の問題にまで(原理的には)直接適用可能になるなど、代数幾何の応用範囲が大きく広がる事となった。詳しくは概型の項を参照。 スキーム論的な言語では、代数多様体とは(代数的閉とは限らない)「体 k 上の既約で被約な有限型スキーム」と定義される。代数多様体の性質を調べるにあたっては、代数的閉体 k 上の代数多様体を考える場合でさえも、今日ではスキーム論の枠組み・概念を用いるのが最も効率的であると信じられており、また、しばしば本質的でさえある。
※この「スキーム論へ向けて」の解説は、「代数多様体」の解説の一部です。
「スキーム論へ向けて」を含む「代数多様体」の記事については、「代数多様体」の概要を参照ください。
- スキーム論へ向けてのページへのリンク