貼り合わせ
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/03 11:31 UTC 版)
三次元球面は、位相的には、通常の三次元球体二つを、それらの境界を張り合わせることによって得られる。三次元球体の境界は通常の二次元球面であるから、この構成は二つの二次元球面を同一視するということである。(位相的には大きさは関係ないから)同じ大きさの三次元球体を思い浮かべよう、そしてそれらの境界となる二次元球面を併せるように重ね合わせれば、二次元球面上のたがいに対応する点の全体は恒等的に一致させられる。二次元球面を二次元円板の(境界となる円周での)張り合わせで作る場合のアナロジーで、この貼り合わせる二次元球面を「赤道球面」(equatorial sphere) と呼ぶ。 上記の重ね合わせでは、三次元球体の「内部」は貼り合わせてはいけないことに注意しなければならない。四次元で考えるための一つの方策として、三次元球体の各点の三次元座標にそのうえの連続な実数値函数の値を第四の座標として付け加える—たとえば球体の各点での「温度」を考えればよい—という方法が挙げられる。いま、貼り合わせる赤道球面での「温度」が零度であるものとし、一方の三次元球体は「高温」、他方は「低温」の球体と思う。高温のほうを「上半球面」、低温のほうを「下半球面」とする三次元球面が得られており、各三次元球体の中心で最高温度/最低温度をとるものとすれば、それら中心がそれぞれ三次元球面の北極/南極になる。 この構成は、(一つ次元を落とした対応物としての)二次元球面の構成を考えると見通しが立つかもしれない。すなわち、二枚の円板(二次元球体)を境界となる円周(一次元球面)で張り合わせることを考える。二つの円板は直径を同じにしておき、二つの円板を重ね合わせて、境界上の点を貼り合わせる。ここで第三の座標として同様に温度を考えてもよいが、いまは空間座標がもう一つあるから、第三の方向へ膨らませれば、それぞれの円板を北半球と南半球とし貼り合わせた円周が赤道となる二次元球面の姿を見るのは容易であろう。
※この「貼り合わせ」の解説は、「三次元球面」の解説の一部です。
「貼り合わせ」を含む「三次元球面」の記事については、「三次元球面」の概要を参照ください。
「貼り合わせ」の例文・使い方・用例・文例
- 貼り合わせのページへのリンク