米田の補題とは? わかりやすく解説

米田の補題

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/17 14:44 UTC 版)

米田の補題(よねだのほだい、: Yoneda lemma)とは、小さなhom集合をもつ C について、共変あるいは反変hom関手 hom(A , _), hom(_, A) から集合値関手 F への自然変換と、値となる集合 F(A) の要素との間に一対一対応が存在するという定理である。「米田の補題」という名称は、米田信夫に因んでソーンダース・マックレーンにより名付けられた[1][2][3]。その主張は、マックレーンによれば、米田の仕事に早くから現れていたという[4]。ただし、エミリー・リール英語版によれば、この補題が初めて (明示的に) 論文に登場したのは Grothendieck (1960) である[5]

米田の補題は、普遍性という概念の根幹に関わる重要な補題であり、また、圏論において「間違いなく最も重要な結果である」[6]「もしかしたら最も利用されているただ1つの結果かもしれない」[7]と言われている。

概要

主張の内容

C を局所的に小さい(locally small)圏とする。すなわち C の各対象 A, B に対して hom(A, B) は集合であるとする。対象 A を固定するとき、共変hom関手 HA = hom(A, _) : CSet は対象 X に対して、集合 hom(A, X) を割り当て、射 f : XY に対して写像 hom(A, f) = f ◦ (_) : hom(A, X) → hom(A, Y) を割り当てる関手であった。さらに、 F : CSet を集合値関手とし、HA から F へのすべての自然変換のクラス Nat(HA, F) について考える。

このとき、米田写像(Yoneda map)と呼ばれる全単射

部分対象分類子の可換図式

有限の極限を持つ圏 C 上の前層(英語: presheafとは C からの反変関手 P : CopSet のことであり、このとき前層の圏を ˆC = SetCop で表す。圏 ˆC部分対象分類子(英語: subobject classifierとは、(存在するならば) ˆC の対象 Ωモノ射 true : 1 → Ω (1終対象) であって、任意のモノ射 j : UX に対して、χjj = true かつその可換図式が引き戻しとなるような カテゴリ


米田の補題

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2016/05/07 22:24 UTC 版)

自然変換」の記事における「米田の補題」の解説

詳細は「米田の補題」を参照 X を局所的に小さい圏 C の対象とすると、対応 Y ↦ HomC(X, Y) から共変函手 FX: C → Set定まる。この函手表現可能函手呼ばれるより一般に適当に選んだ X に対してこの函手自然同型任意の函手表現可能函手と呼ぶ)。表現可能函手から任意の函手 F: C → Set への自然変換は完全にわかっており、容易に記述できる(米田の補題)。

※この「米田の補題」の解説は、「自然変換」の解説の一部です。
「米田の補題」を含む「自然変換」の記事については、「自然変換」の概要を参照ください。

ウィキペディア小見出し辞書の「米田の補題」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「米田の補題」の関連用語

米田の補題のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



米田の補題のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの米田の補題 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの自然変換 (改訂履歴)、Hom関手 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS