宮崎実験線
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/03 01:08 UTC 版)
日本国有鉄道(国鉄)では、国分寺市にある鉄道技術研究所(後の鉄道総研)の構内で短い試験線を敷設して磁気浮上式鉄道の研究を進めてきた。この技術開発の成果を受けて、初めての本格的な実験線として建設されたのが宮崎実験線である。1974年(昭和49年)に国鉄の浮上式鉄道開発会議で建設が決定された。 建設に際しては全国で何箇所かの建設候補地が挙げられたが、最終的に宮崎県の日向市から都農町にかけての日豊本線沿線に決定された。これは、国鉄のリニアモーターカー開発を推進してきた京谷好泰が、狩勝実験線で列車脱線事故に関する研究を行っていた際に、実験で使用した無線電波によって周辺の農家にテレビの受信障害を起こしてしまったものの、理解を得られて実験を継続することができたという経験から、「地方は素朴で親切だ」と感じたことが影響しているという。京谷は当時の磯崎叡国鉄総裁からリニア実験線の建設地について聞かれて、東京から離れた土地を希望した。これが宮崎に建設されるひとつのきっかけであったとされ、実際に宮崎ではリニアモーターカーの実験に周囲からの多大な協力があったという。 こうして1974年(昭和49年)から宮崎実験線に着工し、1977年(昭和52年)4月に実験センターが発足、同年7月に最初に完成した1.3 kmの区間で実験が始まった。その後順次延伸工事が進められ、1979年(昭和54年)8月に当初の計画通りの全線7.0 kmが完成した。実験線は全線が単線で、終点付近に半径1万メートルというわずかな曲線があるだけでほぼ直線で、勾配も日豊本線を横断する部分に5 ‰とわずかにあるだけである。この実験線でML500を用いて速度試験が行われ、1979年(昭和54年)12月に無人運転で517 km/hの速度記録を達成した。これは宮崎実験線における最高速度記録である。 当初の実験線は、逆T字形のガイドウェイを採用していた。ガイドウェイの底面に浮上用のコイルが、突起している部分の側面に推進・案内用のコイルが配置されており、それぞれに対応する超電導電磁石(超電導コイル)が車両側に搭載されていた。この形状を採用したのは、車両の重心近くに推進・制動力を発生させることができて、運動的に安定だからである。しかしこの形状を採用したために、車体の中央近くにガイドウェイの突起が通ることになり、人を乗せられるだけのスペースを作ることができなかった。 1980年(昭和55年)からは、乗車スペースの確保を目的としてガイドウェイをU字形に変更した。このガイドウェイでも底面に浮上用のコイルが、両側面に推進・案内用のコイルが配置されているが、これに対して車上の超電導電磁石は大型化技術の進歩により浮上・推進・案内を1つの磁石でこなせるようになり、車体の両側面に配置された。車内には座席が配置され、有人での試験を行えるようになった。1980年(昭和55年)からMLU001、1987年(昭和62年)からMLU002が運転を開始した。しかしMLU002は1991年(平成3年)に実験中に火災を起こして焼失した。この教訓を受けて対策を施したMLU002Nが1993年(平成5年)1月に導入され、この車両が宮崎実験線における有人走行の速度記録である411 km/hを1995年(平成7年)1月に達成した。 宮崎実験線ではこうして超電導磁気浮上鉄道の技術を着々と開発してきたが、これ以上の技術開発を行ううえでの問題点も明らかとなってきた。実験線はほとんど直線で曲線や勾配がほとんどなく、こうした区間を走行するときのデータを得られない。また距離が7 kmと短いので、500 km/hで走行する時間はごく短く、長期の耐久試験などができない。トンネルも存在しないので、トンネル突入時に生じるトンネル微気圧波などの影響を評価することができず、単線であるため高速での列車同士のすれ違い実験を行うこともできない。こうしたことから、より距離の長く様々な実験条件を備えた実験線が必要とされるようになった。 1987年(昭和62年)12月に、運輸大臣に就任した直後の石原慎太郎が宮崎実験線を視察し、MLU002に試乗した。その後記者会見において「鶏小屋と豚小屋の間を走っている格調の低い実験線では十分なことはできない。昭和63年度予算では実用化のため、新実験線の立地調査費を計上したい」と述べて、新実験線の計画が動き出した。新実験線は山梨県に建設されることになり、1996年(平成8年)をもって宮崎実験線でのリニア走行試験は終了した。宮崎実験線では、ゲートターンオフサイリスタ (GTO) インバータを利用した電力変換所(変電所)や、リニアモーターカー用の分岐器、浮上用コイルをガイドウェイ底面ではなく側面に配置する側壁浮上方式、弾性支持方式の台車などの開発が行われた。また、超電導が突然失われるクエンチ現象に関する究明がMLU002を中心に進められてその対策が講じられた。ガイドウェイの建設に関しても、側壁を工場で生産して一緒にコイルの埋め込みまで行ってしまうビーム方式、側壁を現地で施工して、別途コイルを埋め込んだパネルを取り付けるパネル方式、現地で施工した側壁に現地でコイルを取り付ける直付け方式の3つが試験・比較された。 リニア走行試験終了後の宮崎実験線では、1998年(平成10年)から東北大学の研究グループがエアロトレインの走行試験を行っている。2002年には2号機が有人走行に成功、2010年9月9日には3号機のテスト走行に成功しており、2011年6月には3号機による有人での時速200km走行実験に成功した。現在では「日向灘実験施設」として、東北大学と宮崎大学の共同研究施設として整備棟と実験線の一部が使用されている。 2011年2月から国際航業グループが実験線の軌道上方に太陽電池パネルを並べることでメガソーラー太陽光発電所として利用している。「都農第1発電所」は検証用に作られた太陽光発電所で太陽電池パネル442枚、総出力50kW。3種類の太陽電池パネルを使いそれぞれの発電効率を調べた。その結果を基に、CIS系(カルコパイライト系)太陽電池を採用した太陽電池パネル12,520枚、総出力1,000kWとなるメガソーラー「都農第2発電所」が作られた。都農町側の3.6kmを用いた世界でも稀な細長いメガソーラーとなっている。 2014年3月より、ニコンが東北大学の小濱泰昭と共同で、空気マグネシウム電池のマグネシウム循環社会構想に必要な太陽熱によってマグネシウムを還元する実証実験を旧リニア実験施設(先述の日向灘実験施設の一部)を利用して開始した。
※この「宮崎実験線」の解説は、「リニア実験線」の解説の一部です。
「宮崎実験線」を含む「リニア実験線」の記事については、「リニア実験線」の概要を参照ください。
- 宮崎実験線のページへのリンク