相転移
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/05/24 13:46 UTC 版)
第一種相転移
物質の三態の間の状態変化はいずれも代表的な第一種相転移であり、次のように呼び分けられる。
転移前の相 | 転移後の相 | 現象の呼称 | 転移点の呼称 | 転移熱の呼称 |
---|---|---|---|---|
固相 (固体) |
液相 (液体) |
|||
気相 (気体) |
||||
液相 (液体) |
固相 (固体) |
|||
気相 (気体) |
||||
気相 (気体) |
液相 (液体) |
(特になし) | ||
固相 (固体) |
凝華旧名:昇華(逆の転移と同名。凝固、凝結、[9][10]と呼ばれることもある) | (特になし) | (特になし) |
第一種相転移の転移点は圧力により変化する。物質固有の三重点以下の圧力では液相が存在しないため、蒸発や凝縮、融解や狭義の凝固は起こらない。また、臨界点以上の圧力では気相と液相の相違がなくなり、単一の相しか存在しない。
物理学的性質
一次相転移点の前後では、エントロピーやモル熱容量(モル比熱)などが不連続である。そして、前後の化学ポテンシャル μ1, μ2 とは一致し、相転移の状態にある2つの相にはクラウジウス-クラペイロンの式が成立する。
第一種相転移は準安定状態を持つので固体表面や空間に浮遊する吸湿性の微小粒子やイオンなどの刺激するものが存在しないことが原因で過熱状態や過冷却状態のように転移点を越えても相転移を生じない場合がある。すなわち電子レンジで過熱した水の突沸や、放射線検出器の霧箱・泡箱の原理はこの第一種相転移の準安定状態に由来する。
物性としての蒸発のし易さ、し難さを「揮発性」・「不揮発性」という。液体の表面張力に打ち勝つ熱運動エネルギーを持つ分子は蒸発することができる。言い換えると、蒸発する分子は液体表面への付着についての仕事関数を超える力学エネルギーをもっている。したがって蒸発は液体の温度が高かったり、表面張力が低かったりするほど早く進行する。
また、理想気体あるいは理想液体では圧力に依存してその振る舞いを変えることはないが、実際の物質の場合には高圧になると気相と液相の振る舞いに相違がなくなる。その限界の転移点を「臨界点」と呼ぶ。その臨界点を超えた相の状態を超臨界状態と呼ぶ。
転移熱
熱的現象としては第一種相転移が進行中の一成分系は圧力が一定の場合、系の温度が一定のままでの系外への熱の放出あるいは吸収が見られる。このような機構で生じる熱を[11]または (せんねつ)[12]とよぶ。そもそも熱の定義は物体に作用することで温度変化をもたらす物理量であり、一次相転移点以外の状態では熱の作用は温度変化をもたらすのでこの場合を顕熱[13]とよび、一次相転移点において作用により温度変化を生じない場合を潜熱と呼び分けたことに由来するので、顕熱と潜熱とで物理量である熱として違いがあるわけではない。
(てんいねつ)相転移前後を状態1、状態2とした場合、それぞれの相の生成エンタルピー H1, H2の総量の差分だけ、転移熱が発生する。
転移熱の単位は質量あたりの熱量 (J/g) または物質量あたりの熱量 (J/mol) で示される。例えば、水の融解熱は 333.5 J/g、気化熱は 2256.7 J/g である。
次に転移熱に該当する熱現象を次に示す。
- 蒸発熱(気化熱、凝縮熱) - 気相・液相間の第一種相転移
- 融解熱(凝固熱)- 液相・固相間の第一種相転移
- ^ 英: differential thermal analysis
- ^ 英: phase transition points
- ^ 英: phase transition of the first kind
- ^ 英: phase transition of the second kind
- ^ 英: n-th order phase transition
- ^ 英: first-order phase transition
- ^ 英: second-order phase transition
- ^ Schwabl (2006) p.332
- ^ 佐藤明子, 細矢治夫, 化学と教育, 49(10), p.651 (2001)
- ^ 細矢治夫, 化学と教育, 61(7), p.366 (2013)
- ^ 英: heat of transition
- ^ 英: latent heat
- ^ 英: sensible heat
相転移と同じ種類の言葉
- 相転移のページへのリンク