mathematical analysisとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > mathematical analysisの意味・解説 

解析学

(mathematical analysis から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/20 04:19 UTC 版)

解析学(かいせきがく、英語:analysis, mathematical analysis)とは、極限や収束といった概念を扱う数学の分野である[1][2]代数学幾何学と合わせ数学の三大分野をなす[3]

数学用語としての解析学は還元主義とは異なっており、初等的には微積や級数などを用いて関数の変化量などの性質を調べる分野と言われることが多い[1][4]。これは解析学がもともとテイラー展開フーリエ級数などを用いて関数の性質を研究していたことに由来する[1]

例えばある関数の変数を少しだけずらした場合、その関数の値がどのようにどのぐらい変化するかを調べる問題は解析学として扱われる[1]

解析学の最も基本的な部分は、微分積分学、または微積分学と呼ばれる。また微分積分学を学ぶために必要な数学はprecalculus(calculusは微積分の意、接頭辞preにより直訳すれば微積分の前といった意味になる)と呼ばれ、現代日本の高校1、2年程度の内容に相当する[5]。また解析学は応用分野において微分方程式を用いた理論やモデルを解くためにも発達し、物理学工学といった数学を用いる学問ではよく用いられる数学の分野の一つである。

解析学は微積分をもとに、微分方程式関数など多岐に渡って発達しており[6]、現代では確率論をも含む。

現代日本においては解析学の基本的分野[注釈 1] は概ね高校2年から大学2年程度で習い、進度の差はあれ世界中の高校や大学などで教えられている。

歴史

解析学の起源

解析学の起源は、エウドクソスが考案し、アルキメデスが複雑な図形の面積や体積を求める為に編み出した「取り尽くし法」にまでさかのぼれる[1]。彼らの業績は、ある意味で今日の積分の始まりとも呼べるものであろう。しかしながら近世までは一般的理論は存在せず、あくまで個々の図形に適用されるにとどまった[1]

微分積分学の黎明期

これらは16世紀からフランソワ・ビエトヨハネス・ケプラーカヴァリエリらによって歴史に再登場し[1]、例えば回転体の体積を求める手法であるカヴァリエリの原理などが有名であろう[7]

しかし解析学が本格的な発展を遂げ始めたのは、フェルマーデカルトパスカルジョン・ウォリスジル・ド・ロベルヴァルらによって[1]曲線接線を考える上で考え出された微分学の初歩的概念が登場してからである[1]。とくにフェルマーは極値問題に微分学を応用した[1]。日本において発達した数学である和算においても、ほぼ同時期に微積分の初歩的概念に到達していた[1]

微分積分学誕生

解析学の初歩的概念である微分積分学の成立に関する決定的業績は、ニュートンおよびライプニッツらによってもたらされた。

ニュートンは、古典力学の研究から微分積分学を生み出し、微分と積分を統合して、両者がある意味で逆の関係にあることを見抜いた。これは今日では微分積分学の基本定理と呼ばれる[1]。更に冪級数を用いて主要な関数に微分積分学を応用した[1]。同じ時期に[1] ライプニッツも同様な発見をした上、現代も用いられるライプニッツの記法を考案してその後の研究の基礎を築いた。

ライプニッツが考案した記号としては例えば曲線の接線問題を解くにあたって無限小量である

外部リンク




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「mathematical analysis」の関連用語











mathematical analysisのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



mathematical analysisのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの解析学 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS