折紙の数学
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/26 14:47 UTC 版)
![]() | この記事は英語版の対応するページを翻訳することにより充実させることができます。(2024年5月) 翻訳前に重要な指示を読むには右にある[表示]をクリックしてください。
|
折紙の数学(おりがみのすうがく)の記事では、折り紙に関連した数学について記述する。また、折り紙の科学国際会議という会議名が示すように、折り紙には、数学よりもっと広い科学分野の(例としては構造力学など。あるいは科学よりも広い「STEM」の技術や工学にも)応用がある。
紙を折り曲げる芸術である折り紙に対しては、様々な数学的研究が行われてきた。古くから関心をもたれてきた分野は、作品を傷めることなく折紙作品を平らに折り畳むことができるかどうか (flat-foldability) と、紙を折ることで数学の方程式を解くことができるかどうかなどである。
過去には自明な数学の応用例(特に、いわゆる初等幾何学の)と見られがちなこともあったが、角の三等分などが可能である「折り紙幾何学」という分野の発見や、創作折り紙の分野で「設計」と呼ばれる、完成形を想定して折り方を得る逆問題として捉える手法、コンピュータの応用、また離散数学の研究対象としてなど、広く研究されている。
折紙に関わる学術的探求活動を折り紙による作品づくりと区別するため、芳賀和夫は1994年の第2回折り紙の科学国際会議において世界共通語である折り紙 (origami) に数学 (mathematics) などの学術・技術を表す語尾 (-ics) を合わせてオリガミクス (origamics) という名称を提唱した。海外でも話題になったが、この名称それ自体は紙を切って折りして作る立体origamicの複数形と混同されるため、定着しなかった。
折り紙幾何学
一般に、正方形から折紙で、三角形、五角形、六角形といったいくつかの正多角形を作ること、あるいは、黄金長方形や白銀長方形といった、いくつかの特徴的な比の長方形を作ることは、初等幾何の範囲の問題であり、折り紙でも基本的には容易である。
定規とコンパスによる作図の問題で、長い間解くことのできなかった問題があるが、そのうちいくつかは不可能と証明された。不可能と証明されたうち、角の三等分と立方体倍積の問題は、折り紙においては不自然ではない操作によって解く事が出来る[1]。また、折り紙を用いた4次方程式までの方程式の解法が発見されている。一般に定規とコンパスによる作図に対応する操作が折り紙にもあることはよく知られているが[2]、定規とコンパスの範囲を越える操作について、考察がおこなわれており、特に藤田文章らによる折り紙公理は、この分野の研究に非常に役立っている。折紙研究の結果、芳賀定理などの方法で正方形の一辺を3分の1、5分の1、7分の1、および9分の1に正確に折ることが可能となった。
正方形あるいは任意の紙に、折り線が与えられた時、その折り線に沿った折紙が可能かどうか、さらにはそれが平面に収まるかどうか、は興味深い問題のひとつである。
マーシャル・ベルン (Marshall Bern) とバリー・ヘイズ (Barry Hayes) は山折りや谷折りの指定が無い折り図が与えられたとき、それが全体として平面に折りたためるかどうかはNP完全問題であると証明した[3]。更に詳しい情報や技術的結果についてはGeometric Folding Algorithms[4]のPart IIを参照。
部分について折りたためるかどうかについては、いくつかの条件があきらかになっている。前川定理は、あるパターンが平らに折りたためるかどうかの必要条件を示している。さらに川崎定理(川崎敏和による。en:Kawasaki's theorem)[5]は、必要十分条件が、その展開図においてそれぞれの交点の周りにある全ての角の数列