いそう‐すうがく〔ヰサウ‐〕【位相数学】
位相空間
(位相数学 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/14 23:08 UTC 版)
数学における位相空間(いそうくうかん、英語: topological space)とは、集合Xに位相(topology)と呼ばれる構造を付け加えたもので、この構造はX上に収束性の概念を定義するのに必要十分なものである[注 1]。
注釈
- ^ a b ただしここで言う「収束性」は点列の収束性ではなくより一般的な有向点族の収束性である。
- ^ a b c ℓpノルム、Lpノルム、に関連するノルムとして、ℓpノルム 、 L∞ノルム、 があり、これらは、でp→∞としたものに一致する。同様にソボレフノルムでp→∞としたノルム も定義可能である。
- ^ 距離から定まる位相はハウスドルフ性と正規性を満たすが、密着位相はハウスドルフ性を満たさない。また補有限位相や補可算位相においては空でない任意の開集合の閉包は全体集合であるため、任意x, y ∈ Xの任意の閉近傍は全体集合になってしまう為正規性を満たさない。
- ^ ザリスキー位相はハウスドルフ性を満たさないから。
- ^ より厳密に言うと、有向集合(Λ,≤)と、ΛからXへの写像x : Λ→Xの組の事をΛを添字集合とする有向点族と呼ぶ
出典
- ^ 平場誠示. “解析学III 関数解析”. 東京理科大学. p. 6. 2021年2月5日閲覧。
- ^ a b c d e f g h i j k #内田 pp.68-73.
- ^ a b #内田 p.71.
- ^ a b 位相空間#Kelly p.43.
- ^ a b c d #内田 pp.73-74.
- ^ a b c d e #内田 pp.79-83.
- ^ a b c #Kelly pp.65-66.
- ^ a b #Schechter 7.6
- ^ #Kelly p.70.
- ^ a b c “net”. nLab. 2021年2月8日閲覧。
- ^ a b #Schechter 7.14
- ^ #Kelly p.67.
- ^ a b c Kelly p66
- ^ a b #Kelly p.69.
- ^ a b #Schechter 15.10.節 pp.413-414.
- ^ #Kelly pp.73-75.
- ^ a b c Kelly p86
- ^ #内田 p.95
「位相数学」の例文・使い方・用例・文例
- 位相数学という学問
位相数学と同じ種類の言葉
- 位相数学のページへのリンク