偏微分方程式の数値解法とは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > 偏微分方程式の数値解法の意味・解説 

偏微分方程式の数値解法

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/03/14 01:58 UTC 版)

数値解析 · シミュレーション英語版


離散化・近似解法に関する論文

  1. ^ a b c d e f g 山本哲朗『数値解析入門』(増訂版)サイエンス社〈サイエンスライブラリ 現代数学への入門 14〉、2003年6月。ISBN 4-7819-1038-6 
  2. ^ a b c d 森正武. 数値解析 第2版. 共立出版.
  3. ^ 広田良吾. (1992). 直接法によるソリトンの数理. 岩波書店.
  4. ^ a b Ablowitz, M. J., & Segur, H. (1981). Solitons and the inverse scattering transform. SIAM.
  5. ^ Hairer, E., Lubich, C., & Wanner, G. (2006). Geometric numerical integration: structure-preserving algorithms for ordinary differential equations. en:Springer Science & Business Media.
  6. ^ 吉田春夫. (1995). シンプレクティック数値解法 (古典力学の輝き--未解決問題と新しい発見). 数理科学, 33(6), p37-46.
  7. ^ Furihata, D., & Matsuo, T. (2010). Discrete variational derivative method: a structure-preserving numerical method for partial differential equations. Chapman and Hall/CRC.
  8. ^ a b c d e f g 精度保証付き数値計算の基礎』大石進一 編著、コロナ社、2018年。
  9. ^ a b c Nakao, Mitsuhiro T; Plum, Michael; Watanabe, Yoshitaka (2019). Numerical verification methods and computer-assisted proofs for partial differential equations. Springer. doi:10.1007/978-981-13-7669-6. https://link.springer.com/book/10.1007/978-981-13-7669-6 
  10. ^ a b c 中尾充宏, & 山本野人. (1998). 精度保証付き数値計算 チュートリアル: 応用数理最前線.
  11. ^ a b c 中尾充宏, & 渡部善隆. (2011). 実例で学ぶ精度保証付き数値計算, サイエンス社.
  12. ^ Logg, A., Mardal, K. A., & Wells, G. (Eds.). (2012). Automated solution of differential equations by the finite element method: The FEniCS book. en:Springer Science & Business Media.
  13. ^ Langtangen, H. P., Logg, A., & Tveito, A. (2016). Solving PDEs in Python: The FEniCS Tutorial I. Springer International Publishing.
  14. ^ Deuflhard, P., & Weiser, M. (2012). Adaptive numerical solution of PDEs. Walter de Gruyter.

精度保証・計算機援用証明に関する論文

  1. ^ R. Hirota, J. Phys. Soc. Jpn. 43 (1977) 4116-4124.
  2. ^ R. Hirota, J. Phys. Soc. Jpn. 43 (1977) 2074-2078.
  3. ^ R. Hirota, J. Phys. Soc. Jpn. 43 (1977) 2079-2086.
  4. ^ R. Hirota, J. Phys. Soc. Jpn. 45 (1978) 321-332.
  5. ^ R. Hirota, J. Phys. Soc. Jpn. 46 (1979) 312-319.
  6. ^ M. J. Ablowitz and J. F. Ladik, J. Math. Phys. 16 (1975) 598-603.
  7. ^ M. J. Ablowitz and J. F. Ladik, J. Math. Phys. 17 (1976) 1011-1018.
  8. ^ M. J. Ablowitz and J. F. Ladik, Stud. Appl. Math. 55 (1977) 213-229.
  9. ^ M. J. Ablowitz and J. F. Ladik, Stud. Appl. Math. 57 (1977) 1-12.
  10. ^ T. R. Taha and M. J. Ablowitz, J. Comput. Phys., 55 (1984), 192-202.
  11. ^ T. R. Taha and M. J. Ablowitz, J. Comput. Phys., 55 (1984), 203-230.
  12. ^ T. R. Taha and M. J. Ablowitz, J. Comput. Phys., 55 (1984), 231-253.
  13. ^ T. R. Taha and M. J. Ablowitz, J. Comput. Phys., 55 (1988), 540-548.
  14. ^ Feng, B. F., Maruno, K. I., & Ohta, Y. (2010). A self-adaptive moving mesh method for the Camassa–Holm equation. en:Journal of computational and applied mathematics, 235(1), 229-243.
  15. ^ 松尾宇泰, & 宮武勇登. (2012). 微分方程式に対する構造保存数値解法 (サーベイ, 科学技術計算と数値解析研究部会). 日本応用数理学会論文誌, 22(3), 213-251.
  16. ^ 松尾宇泰. (2012). 構造保存差分スキームについて (Progress in Mathematics of Integrable Systems).
  17. ^ 佐々成正, 吉田春夫, 非線形 Schrödinger 方程式に対する symplectic 数値解法, 日本応用数理学会論文, 10 (2000), 119‐131.
  18. ^ Gonzalez, O., Time integration and discrete Hamiltonian systems, J. Nonlinear Sci., 6 (1996), 449‐467.
  19. ^ Greenspan, D., Discrete Models, in Applied Mathematics and Computation, Addison‐Wesley Publishing Co., Reading, 1973
  20. ^ ハミルトン方程式に対する離散勾配法のRiemann構造不変性 (日本応用数理学会論文誌 2016, Vol.26, No.4, pp.381-415) 石川歩惟, 谷口隆晴.
  21. ^ A. Ishikawa and T. Yaguchi, Geometric investigation of the discrete gradient method for the Webster equation with a weighted inner product, JSIAM Lett., 7 (2015), 17-20.
  22. ^ A. Ishikawa and T. Yaguchi, Invariance of Furihata's Discrete Gradient Schemes for the Webster Equation with Different Riemannian Structures, AIP Conf. Proc. 1648, 180003 (2015).
  23. ^ a b 降籏大介, 森正武. 偏微分方程式に対する差分スキームの離散的変分による統一的導出. 日本応用数理学会論文誌, 8 (1998), 317–-340.
  24. ^ a b Takayasu Matsuo, Masaaki Sugihara, Daisuke Furihata, and Masatake Mori, Spatially Accurate Dissipative or Conservative Finite Difference Schemes Derived by the Discrete Variational Method, Japan J. Indust. Appl. Math., 19 (2002), 311-330.
  25. ^ 金澤宏紀, 松尾宇泰, & 谷口隆晴. (2013). コンパクト差分に基づく離散変分導関数法 (理論). 日本応用数理学会論文誌, 23(2), 203-232.
  26. ^ Miyatake, Y., Sogabe, T., & Zhang, S. L. (2018). On the equivalence between SOR-type methods for linear systems and the discrete gradient methods for gradient systems. en:Journal of Computational and Applied Mathematics, 342, 58-69.
  27. ^ 宮武勇登, 曽我部知広, & 張紹良. (2017). 微分方程式に対する離散勾配法に基づく線形方程式の数値解法の生成. 日本応用数理学会論文誌, 27(3), 239-249.
  28. ^ Bramble, J. H., & Hubbard, B. E. (1962). On the formulation of finite difference analogues of the Dirichlet problem for Poisson's equation. en:Numerische Mathematik, 4(1), 313-327.
  29. ^ Matsunaga, N., & Yamamoto, T. (2000). Superconvergence of the Shortley–Weller approximation for Dirichlet problems. en:Journal of computational and applied mathematics, 116(2), 263-273.
  30. ^ Yamamoto T. (2001) A New Insight of the Shortley-Weller Approximation for Dirichlet Problems. In: Alefeld G., Rohn J., Rump S., Yamamoto T. (eds) Symbolic Algebraic Methods and Verification Methods. Springer, Vienna
  31. ^ Swarztrauber, P. N., & Sweet, R. A. (1973). The direct solution of the discrete Poisson equation on a disk. en:SIAM Journal on Numerical Analysis, 10(5), 900-907.
  32. ^ Strikwerda, J. C., & Nagel, Y. M. (1986). A Numerical Method for the Incompressible Navier-Stokes Equations in Three-Dimensional Cylindrical Geometry (No. MRC-TSR-2948). WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER.
  33. ^ Matsunaga, N., & Yamamoto, T. (1999). Convergence of swartztrauber-sweets approximation for the poisson-type equation on a disk. Numerical functional analysis and optimization, 20(9-10), 917-928.
  34. ^ Fang, Q. (2006). Convergence of Ascher-Mattheij-Russell Finite Difference Method for a Class of Two-point Boundary Value Problems. INFORMATION, 9(4), 563.
  35. ^ Zhang, X. Y. (2010). A New Ascher-Mattheij-Russell Type FDM for Nonlinear Two-point Boundary Value Problems. INFORMATION-AN INTERNATIONAL INTERDISCIPLINARY JOURNAL, 13(4), 1185-1194.
  36. ^ Fox, L., Henrici, P., & Moler, C. (1967). Approximations and bounds for eigenvalues of elliptic operators. en:SIAM Journal on Numerical Analysis, 4(1), 89-102.
  37. ^ Yuan, Q., & He, Z. (2009). Bounds to eigenvalues of the Laplacian on L-shaped domain by variational methods. en:Journal of computational and applied mathematics, 233(4), 1083-1090.
  38. ^ Babuška, I., & Osborn, J. (1991). Eigenvalue problems.
  39. ^ Bramble, J. H., & Osborn, J. E. (1973). Rate of convergence estimates for nonselfadjoint eigenvalue approximations. en:Mathematics of computation, 27(123), 525-549.
  40. ^ Boffi, D., Brezzi, F., & Gastaldi, L. (2000). On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form. en:Mathematics of computation, 69(229), 121-140.
  41. ^ Boffi, D., Duran, R. G., & Gastaldi, L. (1999). A remark on spurious eigenvalues in a square. Applied mathematics letters, 12(3), 107-114.
  42. ^ Driscoll, T. A., Hale, N., & Trefethen, L. N. (2014). Chebfun guide.
  43. ^ Platte, R. B., & Trefethen, L. N. (2010). Chebfun: a new kind of numerical computing. In Progress in industrial mathematics at ECMI 2008 (pp. 69-87). Springer, Berlin, Heidelberg.
  44. ^ Hashemi, B., & Trefethen, L. N. (2017). Chebfun in three dimensions. en:SIAM Journal on Scientific Computing, 39(5), C341-C363.
  45. ^ Wright, G. B., Javed, M., Montanelli, H., & Trefethen, L. N. (2015). Extension of Chebfun to periodic functions. en:SIAM Journal on Scientific Computing, 37(5), C554-C573.
  46. ^ Hecht, F. (2012). New development in FreeFem++. Journal of numerical mathematics, 20(3-4), 251-266.
  47. ^ Hecht, F., Pironneau, O., Le Hyaric, A., & Ohtsuka, K. (2005). FreeFem++ manual.
  48. ^ Sadaka, G. (2012). FreeFem++, a tool to solve PDEs numerically. arXiv preprint arXiv:1205.1293.
  49. ^ 大森克史, & 山口範和. FreeFem++ParaView による非線形現象の可視化.
  50. ^ Alnæs, M., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., ... & Wells, G. N. (2015). The FEniCS project version 1.5. Archive of Numerical Software, 3(100).
  51. ^ Dupont, T., Hoffman, J., Johnson, C., Kirby, R. C., Larson, M. G., Logg, A., & Scott, L. R. (2003). The fenics project. Chalmers Finite Element Centre, Chalmers University of Technology.
  52. ^ 代用電荷法とその応用 POD版 (2008) 村島定行(著), 森北出版.
  1. ^ 中尾充宏. (2009). 偏微分方程式の解に対する数値的存在検証. 電子情報通信学会 基礎・境界ソサイエティ Fundamentals Review, 2(3), 3_19-3_28.
  2. ^ Breuer, B., Plum, M., & McKenna, P. J. (2001). "Inclusions and existence proofs for solutions of a nonlinear boundary value problem by spectral numerical methods." In Topics in Numerical Analysis (pp. 61–77). Springer, Vienna.
  3. ^ Gidas, B., Ni, W. M., & Nirenberg, L. (1979). "Symmetry and related properties via the maximum principle." Communications in Mathematical Physics, 68(3), 209–243.
  4. ^ a b c Liu, X., & Oishi, S. (2013). Verified eigenvalue evaluation for the Laplacian over polygonal domains of arbitrary shape. en:SIAM Journal on Numerical Analysis, 51(3), 1634-1654.
  5. ^ a b Liu, X., & Oishi, S. (2013). Guaranteed high-precision estimation for interpolation constants on triangular finite elements. Japan Journal of Industrial and Applied Mathematics, 30(3), 635-652.
  6. ^ a b Oishi, S. (1995). Numerical verification of existence and inclusion of solutions for nonlinear operator equations. en:Journal of Computational and Applied Mathematics, 60(1-2), 171-185.
  7. ^ a b Oishi, S. (1994). Two topics in nonlinear system analysis through fixed point theorems. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences, 77(7), 1144-1153.
  8. ^ Numerical verification method of solutions for elliptic equations and its application to the Rayleigh-Bénard problem, Japan Journal of Industrial and Applied Mathematics Vol.26, Issue 2-3, Oct. 2009, pp.443--463, Yoshitaka Watanabe(Kyushu University), Mitsuhiro T. Nakao(Kyushu University)
  9. ^ Liu, X. (2015). A framework of verified eigenvalue bounds for self-adjoint differential operators. Applied Mathematics and Computation, 267, 341-355.
  10. ^ Sekine, K., Takayasu, A., & Oishi, S. I. (2014). An algorithm of identifying parameters satisfying a sufficient condition of Plum's Newton-Kantorovich like existence theorem for nonlinear operator equations. Nonlinear Theory and Its Applications, IEICE, 5(1), 64-79.
  11. ^ Mizuguchi, M., Takayasu, A., Kubo, T., & Oishi, S. I. (2017). A method of verified computations for solutions to semilinear parabolic equations using semigroup theory. en:SIAM Journal on Numerical Analysis, 55(2), 980-1001.
  12. ^ 関根晃太, "偏微分方程式の解の計算機援用存在証明法のためのC++を用いた精度保証付き数値計算ライブラリの構築", 第59回プログラミング・シンポジウム
  13. ^ 大石進一 et. al. (2019). 半線形楕円型境界値問題の精度保証付き数値計算結果の改善. 日本応用数理学会論文誌, 29(1), 17-45.
  14. ^ Watanabe, Y., Yamamoto, N., & Nakao, M. T. (1999). A numerical verification method of solutions for the Navier-Stokes equations. In Developments in reliable computing (pp. 347-357). Springer, Dordrecht.
  15. ^ Nakao, M. T., Hashimoto, K., & Kobayashi, K. (2007). Verified numerical computation of solutions for the stationary Navier-Stokes equation in nonconvex polygonal domains. Hokkaido Mathematical Journal, 36(4), 777-799.
  16. ^ Wilczak, D. (2003). Chaos in the Kuramoto–Sivashinsky equations—a computer-assisted proof. Journal of Differential Equations, 194(2), 433-459.
  17. ^ Zgliczynski, P. (2002). Attracting fixed points for the Kuramoto--Sivashinsky equation: A computer assisted proof. SIAM Journal on Applied Dynamical Systems, 1(2), 215-235.
  18. ^ Zgliczynski, P. (2004). Rigorous numerics for dissipative partial differential equations II. Periodic orbit for the Kuramoto–Sivashinsky PDE—a computer-assisted proof. Foundations of Computational Mathematics, 4(2), 157-185.
  19. ^ Zgliczynski, P., & Mischaikow, K. (2001). Rigorous numerics for partial differential equations: The Kuramoto—Sivashinsky equation. Foundations of Computational Mathematics, 1(3), 255-288.
  20. ^ Lahmann, J. R., & Plum, M. (2004). A computer‐assisted instability proof for the Orr‐Sommerfeld equation with Blasius profile. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 84(3), 188-204.
  21. ^ Watanabe, Y., Plum, M., & Nakao, M. T. (2009). A computer‐assisted instability proof for the Orr‐Sommerfeld problem with Poiseuille flow. ZAMM‐Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik: Applied Mathematics and Mechanics, 89(1), 5-18.
  22. ^ Watanabe, Y., Nagatou, K., Plum, M., & Nakao, M. T. (2011). A computer-assisted stability proof for the Orr-Sommerfeld problem with Poiseuille flow. Nonlinear Theory and Its Applications, IEICE, 2(1), 123-127.
  23. ^ 中尾充宏, & 渡部善隆. (2004). Orr-Sommerfeld 問題の解に対する計算機援用証明について (数学解析の理論的展開の計算機による支援・遂行可能性).
  24. ^ Cyranka, J. (2015). Existence of globally attracting fixed points of viscous Burgers equation with constant forcing. A computer assisted proof. Topological Methods in Nonlinear Analysis, 45(2), 655-697.
  25. ^ Cyranka, J., & Zgliczynski, P. (2015). Existence of globally attracting solutions for one-dimensional viscous Burgers equation with nonautonomous forcing-A computer assisted proof. SIAM Journal on Applied Dynamical Systems, 14(2), 787-821.
  26. ^ A. Takayasu, M. Mizuguchi, T. Kubo, and S. Oishi: "Accurate method of verified computing for solutions of semilinear heat equations", Reliable computing, Vol. 25, pp. 74-99, July 2017.
  27. ^ Mizuguchi, M., Takayasu, A., Kubo, T., & Oishi, S. I. (2014, September). A sharper error estimate of verified computations for nonlinear heat equations. In SCAN 2014 Book of Abstracts (p. 119-120).
  28. ^ Mizuguchi, M., Kubo, T., Takayasu, A., & Oishi, S. (2013) A priori error estimate of inhomogeneous heat equations using rational approximation of semigroups. Japan Society for Simulation Technology.
  29. ^ Takayasu, A., Yoon, S., & Endo, Y. (2019). Rigorous numerical computations for 1D advection equations with variable coefficients. Japan Journal of Industrial and Applied Mathematics, 36(2), 357-384.


「偏微分方程式の数値解法」の続きの解説一覧



英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「偏微分方程式の数値解法」の関連用語

偏微分方程式の数値解法のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



偏微分方程式の数値解法のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの偏微分方程式の数値解法 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS