ローンチ・ヴィークル
(打ち上げロケット から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/05/09 08:49 UTC 版)

宇宙飛行 |
---|
![]() |
歴史 |
応用 |
宇宙機 |
打ち上げ |
宇宙飛行の種類 |
宇宙関連の組織 |
![]() |
ローンチ・ヴィークル(launch vehicle)またはキャリア・ロケット(carrier rocket)とは地球から宇宙空間に人工衛星や宇宙探査機などのペイロードを輸送するのに使用されるロケット。日本語では打上げ機と呼ばれることもある。ローンチ・システム(launch system)と言った場合はローンチ・ヴィークル、発射台、その他打上げに関する施設を含む[1](「システム」の記事も参照)。
速度が低ければ、ペイロードが地表に戻る弾道飛行(ballistic flight、あるいはsub-orbital flight)となる。一般に観測ロケットや軍事目的のミサイル等は弾道飛行をする。通常、弾道飛行は放物線であると考えることが多い。しかしそれは厳密には、地面が平らで地球の中心が十分に遠い、とした近似であり、正確には楕円軌道の一部である。そして弾道飛行における頂点は「半分以上が地球内部に潜っている楕円軌道の遠地点」である。
この遠地点の付近を、一般には地球の大気の影響が十分に薄くなった高度に取って、その前後でさらにロケットエンジンを噴射し加速し続ければ、前述の地球内部に潜っている楕円軌道における近地点がどんどん上がってゆくように軌道が変化し続ける。そして近地点も地球の大気の影響が十分に薄い高度になれば、その軌道はもはやペイロードが地球に(すぐに)戻ることはない、次に述べるような人工衛星の、軌道(orbit)となる(遠地点と近地点の高度が等しい場合が円軌道である)。なお、後述するように「軍用の飛翔体の場合は弾道ミサイルとして区別される」といった区別のしかたが一般的であって、力学的には同じ所もあれば厳然として違う所もあるのであるが、マスコミや、専門家でないマニア等による説明には、この段落で説明したような力学は、意識されていない場合が見受けられる。
ペイロードが地球周回軌道を周り続ける人工衛星の場合は、ローンチ・ヴィークルにより第一宇宙速度(理論上、海抜0 mでは約 7.9 km/s = 28,400 km/h[注 1])まで加速させられて軌道に分離・投入される。またペイロードが地球周回軌道を離れる宇宙探査機の場合は、さらに高速の第二宇宙速度(いわゆる「地球脱出速度」)まで加速させられる。一方、ペイロードの目的によっては軌道が弾道飛行の場合もあり、特にペイロードの弾頭に爆発物などを載せて目的地に着弾させる軍用の飛翔体の場合は弾道ミサイルとして区別される。
「宇宙」の定義が、宇宙開発より古い宇宙空間物理の観点があることなど[2]から軌道速度とは関係なく高度で考えられることが多いため、厳密な区分は不可能と考えられるが、日本ではよく「宇宙ロケット」と「観測ロケット」と呼び別ける(宇宙ロケット以外のほとんどのロケットのペイロードの目的が観測というためもある)。総合的な「打上げシステム」としての観点からはむしろ、「宇宙」の定義を高度ではなく軌道で与えたほうがすっきりはする。
種別・特徴
使い捨て型ローンチ・ヴィークル (expendable launch vehicle) は一度きりの使用を目的に設計される。これらは通常ペイロードと切り離された後、大気圏再突入時に崩壊する。一方、再使用型ローンチ・ヴィークル (reusable launch vehicle) はそのままの状態で回収され、再び打上げに使用される。ロケットを使用しないローンチ・システムは今のところ概念的なものに過ぎない。
ローンチ・ヴィークルはしばしば軌道へ送り込むことが可能な質量の量で特徴付けられる。例えば、プロトンロケットは低軌道に22000kgのペイロード能力を有する。またロケットの段数で特徴付けられることもあり、ほとんどは2から4の多段ロケットである。多段式でないローンチ・ヴィークルとして単段式宇宙輸送機 (SSTO) という概念が存在するが、開発が成功した事例はない。
特定のローンチ・ヴィークルについて語られる際、必ず述べられるその他の事項として、所属する国家、打上げに関して責任を負う宇宙機関、およびヴィークルの製造、打上げを行う会社やコンソーシアム、がある。
打上げプラットフォーム
- 地上: スペースポート、固定式ミサイルサイロ[3]
- 海上: 固定式プラットフォーム(サン・マルコ)、移動式プラットフォーム(シーローンチ)、潜水艦[4]
- 空中発射式: 航空機(ペガサス、ストラトローンチ・システムズ、ランチャーワン)、気球(ロックーン)
サイズ
- 観測ロケット: 軌道に到達する能力がなく、弾道飛行を行うのみ。
- 超小型衛星打上げ機: 低軌道へ100kg未満までのペイロード能力を有する[5]
- スモールリフト・ローンチヴィークル: 低軌道に2,000kgまでのペイロード能力を有する[6]。
- ミディアムリフト・ローンチヴィークル: 低軌道に2,000kgから20,000kgまでのペイロード能力を有する[6]。
- ヘヴィーリフト・ローンチヴィークル: 低軌道に20,000kgから50,000kgまでのペイロード能力を有する[6]。
- スーパーヘヴィーリフト・ローンチヴィークル: 低軌道に50,000kg以上のペイロード能力を有する[6][7]。
関連項目
脚注
注釈
出典
- ^ See for example: NASA Kills 'Wounded' Launch System Upgrade at KSC Archived 2006年2月28日, at the Wayback Machine. Florida Today
- ^ 他に、米ソおよび米国内の宇宙開発競争で「一番乗り」は誰か、ということが定義により変わるため、といった事情もある。
- ^ 例としてはICBMからの転用ロケットであるストレラなど。
- ^ 例としてはSLBMからの転用ロケットであるShtil'やヴォルナなど。
- ^ Small and sweet: NASA wants a dedicated launch vehicle for cubesats
- ^ a b c d NASA Space Technology Roadmaps - Launch Propulsion Systems, p.11: "Small: 0-2t payloads, Medium: 2-20t payloads, Heavy: 20-50t payloads, Super Heavy: >50t payloads"
- ^ HSF Final Report: Seeking a Human Spaceflight Program Worthy of a Great Nation, October 2009, Review of U.S. Human Spaceflight Plans Committee, p. 64-66: "5.2.1 The Need for Heavy Lift ... require a “super heavy-lift” launch vehicle ... range of 25 to 40 mt, setting a notional lower limit on the size of the super heavy-lift launch vehicle if refueling is available ... this strongly favors a minimum heavy-lift capacity of roughly 50 mt ..."
外部リンク
- S. A. Kamal, A. Mirza: The Multi-Stage-Q System and the Inverse-Q System for Possible application in SLV, Proc. IBCAST 2005, Volume 3, Control and Simulation, Edited by Hussain SI, Munir A, Kiyani J, Samar R, Khan MA, National Center for Physics, Bhurban, KP, Pakistan, 2006, pp 27–33 Free Full Text
- S. A. Kamal: Incorporating Cross-Range Error in the Lambert Scheme, Proc. 10th National Aeronautical Conf., Edited by Sheikh SR, Khan AM, Pakistan Air Force Academy, Risalpur, KP, Pakistan, 2006, pp 255–263 Free Full Text
- S. A. Kamal: The Multi-Stage-Lambert Scheme for Steering a Satellite-Launch Vehicle, Proc. 12th IEEE INMIC, Edited by Anis MK, Khan MK, Zaidi SJH, Bahria Univ., Karachi, Pakistan, 2008, pp 294–300 (invited paper) Free Full Text
- S. A. Kamal: Incompleteness of Cross-Product Steering and a Mathematical Formulation of Extended-Cross-Product Steering, Proc. IBCAST 2002, Volume 1, Advanced Materials, Computational Fluid Dynamics and Control Engineering, Edited by Hoorani HR, Munir A, Samar R, Zahir S, National Center for Physics, Bhurban, KP, Pakistan, 2003, pp 167–177 Free Full Text
- S. A. Kamal: Dot-Product Steering: A New Control Law for Satellites and Spacecrafts, Proc. IBCAST 2002, Volume 1, Advanced Materials, Computational Fluid Dynamics and Control Engineering, Edited by Hoorani HR, Munir A, Samar R, Zahir S, National Center for Physics, Bhurban, KP, Pakistan, 2003, pp 178–184 Free Full Text
- S. A. Kamal: Ellipse-Orientation Steering: A Control Law for Spacecrafts and Satellite-Launch Vehicles, Space Science and the Challenges of the twenty-First Century, ISPA-SUPARCO Collaborative Seminar, Univ. of Karachi, 2005 (invited paper)
- Christmas turns bad for ISRO, GSLV mission fails.
打ち上げロケット
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/10 13:53 UTC 版)
詳細は「ソユーズロケット」を参照 ソユーズの打ち上げには、通常R-7(ロシア語 Р-7)というミサイルを改良した11A511型ロケットが使われる。11A511とはロシア国防省内のGRAUによる名称であり、アメリカ議会図書館ではA-2と命名しており、この呼称のほうがよく知られる。ソユーズ宇宙船と合わせソユーズロケットとも呼ばれる。 R-7の改良型はスプートニク1号やユーリ・ガガーリンも乗ったボストークを打ち上げた実績を持っている。A-1(ボストーク、ルナロケット)やA-2を含むA型ロケットは、もともとはR型ミサイル、すなわち大陸間弾道ミサイルとして開発されたものであり、A-2から宇宙船を外せばそのまま核弾頭を搭載して北米に撃ち込むことができた。同様にアメリカでも、マーキュリー宇宙船を打ち上げたレッドストーンも短距離弾道ミサイルだったことなどから、宇宙開発がどれだけ軍拡競争と密接な関係にあったかが伺える。 A-2も随所に改良点はあるものの、ケロシンと液体酸素を燃料としたり、第2段ロケットの周りに4本の第1段ロケットを取り付けるクラスター構成など、基本的なシステムは初期のR-7から代々受け継がれている。 アメリカ側では第1段の4本のロケットは補助ロケットブースター(第0段)と見なしており、この場合中央の第2段ロケットが第1段となる。 ソユーズロケット (A-2) 一覧 ソユーズ 11A511 ソユーズL 11A511L ソユーズM 11A511M ソユーズU 11A511U ソユーズU2 11A511U2、11A511K ソユーズFG 11A511U-FG ソユーズ2 14A14 ソユーズ宇宙船の打上げには、16号からTM-34まではソユーズUロケット、TMA-1からは改良型のソユーズFGロケットが使われている。一方、プログレス補給船の打上げには数機がソユーズFGロケットの試験を兼ねて打上げられたのを除き、ソユーズUロケットが使い続けられている。 アメリカや日本では、ブースターと1段ロケットと呼ばれているものは、ロシアでは1段ロケットと2段ロケットと呼ぶ。A-2では、第1段も第2段も、4基の燃焼室と、その周りにある姿勢制御のための補助エンジン(バーニアエンジン)からなる。2段はRD-108、1段はRD-107エンジンを使用。補助エンジンは第2段に四方に合計4基、第1段には外側に2基装備されている点がRD-107とRD-108エンジンの違いである。 メインエンジンのノズルは固定されているが、補助エンジンにはジンバル機構(ノズルの向きを傾ける機構)が備わっており、これを動かすことによってロケットの姿勢を制御する。4基の燃焼室からなるメインエンジンの燃料を送るポンプは1基だけで、ポンプの先の燃焼室とノズルが4基になっている。こうすることで燃焼室1基あたりの圧力を下げることが出来るため、圧力に対する耐久力の設計を低く抑えられる。 そして第2段の上にトラス部分を経て第3段ロケットが搭載され、さらにその上にソユーズ宇宙船やプログレス補給船が搭載される。トラス部分が存在するのは、切り離しに先立って第3段ロケットを点火してトラス部分に噴射することで第2段ロケットとの距離を確保して衝突を防ぐためであり、ソビエト連邦の多段式ロケットの多くに採用されている機構である。実際ソユーズ18号では切り離し機構の故障により切り離しに失敗したが、第3段ロケットの推力で切り離し機構を焼き切ることで切り離しに成功し地球に生還することができた。 ロケットの頂部には空気の流れを整えるためにフェアリング(カバー)と、最上部にはアポロ宇宙船などと同様のアボートタワーが取り付けられる。これらは第1段ロケット分離前後に大気圏上層部で外される。 これら全て合わせると、最大で直径10.3m、全長49.3m、重量310トンになる。 A-2の打ち上げでユニークなのは、打ち上げまでロケットを保持していた支柱が、ロケットエンジンに点火されると同時に花びらのように開く方式である。このような方法になったのは、ロケットの軽量化が理由である。 第1段ロケット4本を外部に設置した中央の第2段ロケットは軽量化の結果、構造的に第1段ロケットの重量を支えることが出来なかったため、トラス構造の頑丈な支柱に第1段ロケットが吊り上げられた状態で発射される。この方式はチュルパン(Tyulpan、チューリップ)発射方式と呼ばれ、レニングラード金属鋳造工場 (LMZ) で設計された。ロケットのエンジンが点火され、第1段ロケットの推力が上がりそれ自体の重量を支えられるようになると(すなわち「エンジン出推力重量」となると)、第1段ロケットを支持する4つの支柱が離れ外側へ倒れこみ、ロケットは上昇を開始する。この光景はロシアのロケット発射に固有の風景である。西側のロケットではブースター重量を第1段が支持できるためこのような構造は見られない。 打ち上げから114秒後にアボートタワー、118秒後に第1段ロケットを切り離し、さらに加速。157秒後に大気圏上層部でフェアリングを分離し、さらに打ち上げから287秒で第2段を切り離し、第3段に点火。最終的に発射から528秒後、ソユーズ宇宙船が地球周回軌道に投入される。 ※打ち上げロケット (A-2) についてはR-7 (ロケット)のページも参照のこと。
※この「打ち上げロケット」の解説は、「ソユーズ」の解説の一部です。
「打ち上げロケット」を含む「ソユーズ」の記事については、「ソユーズ」の概要を参照ください。
「打ち上げロケット」の例文・使い方・用例・文例
- 打ち上げロケットのページへのリンク