3代荒川橋梁
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/01/03 02:44 UTC 版)
「荒川橋梁 (東北本線)」の記事における「3代荒川橋梁」の解説
昭和30年代に入ると東京近郊の通勤輸送はさらに増大していき、赤羽 - 大宮間では旅客線が京浜東北線の電車によって占有される時間帯が長くなる一方であった。朝夕のラッシュ時には、東北・上越・信越各線の中長距離列車の一部を貨物線経由にすることで何とかしのいできたが、いよいよ輸送力の限界に達したため、さらに2線を増設して3複線とする計画が国鉄第3次長期計画の一環として打ち出された。こうして荒川橋梁も2線を増設する工事に着手することになり、昭和初期の架け替えに際して撤去した初代橋梁に通じる線路敷きがそのまま残っていて、新たな用地買収が少なくて済み、線路の取付も滑らかに行えることから、初代橋梁の位置に新設橋梁を設置することになった。これにより、従来の橋梁に対して下流側に約19メートルの間隔を置いて新たな橋梁の建設を実施することになった。この位置には初代橋梁の煉瓦の基礎が河床面以下にそのまま残されていたことから撤去工事が行われた。赤羽 - 大宮間の線増工事の中でも、荒川橋梁は工期の点でも施工の難易度の点でも最大の問題とみなされたため、真っ先に着手することになった。 またこれに合わせて、建設省の荒川改修計画に基づいて在来橋梁の径間変更と橋桁扛上 の必要があったことから、従来の荒川橋梁の改修工事が実施されることになった。この結果、新設橋梁を建設してそちらに列車の運行を切り替え、使用を休止した従来の橋梁を改修する作業を2回繰り返して、従来の複線橋梁2本分の改修工事が完了した時点で3複線としての輸送力を発揮することで工事計画が策定された。当時は地盤沈下の進行が問題であったこともあり、沈下余裕を確保することも建設省から要求された結果、改修完了後は計画高水位から桁下までの高さを従来より1.8メートル上げて、3.4メートルにすることになった。従来の橋梁でも赤羽方・川口方両方ともに、許される最大の勾配である10パーミルで橋に取り付いており、単純にレールの位置を上げると赤羽や川口の構内まで全体に地盤を扛上する必要が出て工期・工費ともに嵩むことから、橋梁の中に勾配を挿入して橋梁の中間部だけを所定の桁下高さに持ち上げることにし、加えて従来は桁下からレールの高さまで2.0メートルあったのを、0.8メートル薄くして1.2メートルに改良することにした。勾配変更点を橋梁上に設ける必要から、下路プレストレスト・コンクリート桁(PC桁)を採用することになった。 供用中の橋梁は1952年(昭和27年)の桁交換後、赤羽側から約19メートルのプレートガーダー14連、約60メートルのトラス4連、約19メートルのプレートガーダー8連となっていた。建設省との協議では、荒川の場合は40メートル以上の径間が望ましいとされた。またさらに赤羽側に流水路が移動する傾向があったので、従来よりもさらに赤羽側の2連分をトラスにして、新たな橋では約60メートルのトラスを6連架けることにした。そして側径間では、従来の約19メートルのプレートガーダーの2連分の長さでPC桁を架けることにした。新設される電車線の橋梁では、中央の約60メートル径間の部分をPC桁にすることも検討したが、施工上の問題が懸念されたために平行弦トラスが選択され、側径間についても従来通りプレートガーダーにする案も検討したが、工事費が嵩み設計上困難な面もあったことからPC桁となった。なお、従来の旅客線(電車線を分離して列車線となる)・貨物線橋梁の改修では、トラス桁のうち4連ずつは従来のものを流用した。このため列車線・貨物線では曲弦トラスとなり、景観を揃えるために新設の電車線橋梁でも曲弦トラスの採用が検討されたが、最終的に電車線のみは平行弦トラスが採用されることになった。 こうして決定した荒川橋梁の径間割は、赤羽側から38.6メートル複線PC桁4連、59.1メートル複線トラス桁3連、62.4メートル複線鋼製トラス桁3連、38.6メートル複線PC桁4連となった。一方新河岸川橋梁については、従来は赤羽側から18.3メートル単線鋼製プレートガーダー×複線、45.7メートル複線鋼製トラス桁、18.3メートル単線鋼製プレートガーダー×複線であったが、新設の電車線については赤羽側から22.1メートル複線PC桁、59.1メートル複線鋼製トラス桁、10.4メートルRC桁が採用された。新たに架設された橋桁の設計活荷重はKS-18であるが、2代橋梁から流用した3連×2本のトラス桁についてはクーパーE40である。トラス桁の自重は支間約59.1メートルで約275トン、支間約62.4メートルで約300トン、PC桁の自重は1,060トンある。桁下からレール面までを薄く抑えるために厚い部材を採用せざるを得ず、重量が標準設計より1割程度大きくなっており、同じ支間59.1メートルの複線下路トラスである新河岸川橋梁のトラス桁では約29トン軽くなっている。新設橋梁におけるトラス桁の製作は、1連目が三菱重工業、2連目・3連目が宮地鉄工、4連目が川田工業、5連目が桜田機械、6連目が横河橋梁である。一方改修した在来橋梁については、昭和初期に架設された4連目から6連目が汽車製造と石川島造船所(後のIHI)、1952年に桁交換された3連目は横河橋梁と松尾橋梁、今回新たに架設した1連目と2連目が宮地鉄工と汽車製造である。 新たに建設する橋梁では、ケーソン、井筒、鋼管パイル、ベノト杭の4種類の基礎を検討し、現在線への影響や経済的な理由からケーソン基礎が選択された。ただし新河岸川橋梁の橋台はベノト杭が採用された。既設橋梁についてもこの工事の時点で、杭基礎の沈下が激しくて列車に50 km/hの速度制限を掛けなければならなかったが、合わせてケーソン基礎に置き換えた。 トラス桁の架設は、本来は1連目を仮設の支柱(ベント)を使って組み立てて、以降は架橋クレーンを使って順次終点側へ向かって跳ね出していくのがもっとも効率が良い方法であったが、河川敷の使用時期の制約やPC桁架設工事との重複の問題から、2連目を先に架設して終点側へ向けて架橋クレーンで組み立てを行い、1連目はPC桁の施工完了を待ってトラッククレーンを使って架設した。美観を考えて、トラス架設用に使ったトラス桁同士の連結棒は改造して1連目から6連目までを連結する疑似連結棒にした。新河岸川橋梁については、仮設の柱を川の中に立てることが許されなかったため、ポンツーンを使ってトラス桁を引き出して対岸に渡すポンツーンエレクション工法を採用した。 荒川橋梁の架け替え工事の特徴として、Program Evaluation and Review Technique (PERT) を使って工程管理を行ったことがある。PERTでは、工程をネットワークを使って表現し、全体の工程を制約する作業に資源を集中投入して工事を進めることで、工事を効率的に、かつ短工期で進めることができる。荒川橋梁の工事では、まだPERTを導入していない時に作業を行ったPC桁の建設工事に170日かかったのに対して、PERTを導入した工程管理を開始した後の同一の作業では78日で完了し、同じ作業の繰り返しであるために作業員が慣れて効率が向上した効果もあるとしても、PERTによる工程管理の効果があると分析している。 1964年(昭和39年)1月に建設省との協議が整い、荒川橋梁の工事が開始された。新設された電車線用の橋梁は1965年(昭和40年)に完成し、10月17日から上り線を、10月31日から下り線を供用開始した。続いて旅客線の改築工事を施工し、1966年(昭和41年)11月9日から上り線を、11月21日から下り線を供用開始した。1968年(昭和43年)10月にすべての工事が完了して3複線での供用が開始された。担当は東京第一工事局赤羽工事区で、施工業者は間組、ピーエスコンクリート、日本鋼弦コンクリート、オリエンタルコンクリート、横河橋梁、東鉄工業の各社であった。工費は、新設した橋梁が約15億円、改良した橋梁が1橋梁あたり約10億円であった。
※この「3代荒川橋梁」の解説は、「荒川橋梁 (東北本線)」の解説の一部です。
「3代荒川橋梁」を含む「荒川橋梁 (東北本線)」の記事については、「荒川橋梁 (東北本線)」の概要を参照ください。
- 3代荒川橋梁のページへのリンク