原子核物理学
(核物理 から転送)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/28 16:15 UTC 版)
ナビゲーションに移動 検索に移動
![]() |
この項目は内容が専門的であり、一般の閲覧者にはわかりにくくなっている恐れがあります。
|
![]() |
この記事には複数の問題があります。
|
原子核物理学 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]()
|
||||||||||||||
放射性崩壊 核分裂反応 原子核融合 |
||||||||||||||
|
||||||||||||||
原子核物理学(げんしかくぶつりがく、英語:nuclear physics、単に核物理とも言う):強い相互作用に従う粒子の多体問題を研究する学問領域。主に原子核の核構造、核反応(核分裂反応、核融合反応)などを扱う分野のこと。また、核物質・ハドロン物質の性質を調べるハドロン物理学も、この分野の一部である。
構成要素が2種類(注・ハイパー核はさらに数種類の構成要素が加わる)であるにもかかわらず、陽子・中性子それぞれの数や励起のさせ方により、様々な構造を取るのが特徴である。核子の主要な相互作用である「強い相互作用」が未だ完全に解明されていないこと、物性理論のように構成粒子が無限であるという近似が許されないこと、表面の効果が重要であること等により、発見から1世紀近く経つにもかかわらず、未知の部分が残されており、理論実験ともに盛んに研究が行われている。
原子核物理学における理論
対象とするエネルギー領域によって、狭義の原子核物理学、ハドロン物理学に大別される。
低エネルギー領域における現象を記述する原子核物理学では、核子の自由度から原子核の構造を記述する「微視的核構造理論」の構築に力が注がれている。 近年ファデエフの方法やその拡張、あるいはモンテカルログリーン関数法などによって非相対論的な核子少数多体系の厳密解が得られるようになった。 また、この微視的核構造理論を基にした核反応物理学の構築にも力が注がれている。 ここで培われた方法はハイパー核の研究などにも適用されている。 より核子数の多い原子核の記述のために平均場理論を基にした集団運動模型が整備され、着々と精密化が進んでいる。 また大規模な殻模型計算を数値的に行う手法も飛躍的に発展し、模型の範囲内では満足な計算結果を得られるようになった。 一方量子分子動力学を基にしたAMD模型等により核構造の記述が試行されているが、その理論正当性はいまだに判然としない。
中間エネルギー領域の現象を記述するハドロン物理学では量子色力学(QCD)に基づく記述が目標とされている。 理論的に疑問点の少ない摂動論を用いた現象の記述は、摂動的に記述できる部分と非摂動的に記述しなければならない部分との因子化分離が可能な場合にはよく理解されている。 しかし非摂動領域での有効模型やQCD和則による研究は、永年月にわたる多大な努力にもかかわらず芳しい進展を見ない。 一方で模型に依らない格子QCD数値計算の方法は急激かつ長足の進歩を見せている。 現在主な研究内容としては、相対論的高エネルギー重イオン衝突時等におけるQGP(クォークグルーオンプラズマ)生成の機構やその性質、高密度核物質におけるカラー超伝導状態の記述、またカラー超伝導相からダイ・クォーク凝縮相へのBCS-BECクロスオーバー、更に中性子星内部における中間子凝縮等が挙げられ、広い温度・密度領域における核物質の多様性に関する研究を相転移(カイラル相転移、クォークの閉じ込め・非閉じ込め相転移)という概念の下、活発に行われている。
原子核物理学における実験
現代の原子核に関する実験には大雑把に言って原子核をくっつけて(核融合反応)自然に存在しないより大きな原子核を作る実験(超重核の探索など)、ぶつけて壊す(核破砕反応)事によって天然に存在しない核を作り性質を調べる実験(中性子過剰核や陽子過剰核の実験)、陽子・中性子以外にストレンジネスを持つバリオンであるハイペロンを混入してその振る舞いを調べる実験(ハイパー核)、重い原子核同士を高エネルギーで衝突させて新しい物質状態を探索する実験(相対論的重イオン衝突)などがある。
測定の手法としては励起状態から基底状態へ移る際に放出されるγ線のエネルギーとその揺らぎを測定する実験(原子核分光)、原子核崩壊の生成物のエネルギーとその揺らぎを測定する実験、原子核に高エネルギーの光子や電子を入射してその変化を調べる実験、その他原子核から放出される種々の粒子を測定する実験がある。
最近取り沙汰される話題
関連項目
核物理
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/03/04 18:12 UTC 版)
高純度のプルトニウム239は、兵器級高濃縮ウラン235よりも格段に安く大量生産できるため、核兵器や原子力発電所で利用されている。核分裂反応によりウラン235原子から2または3個の中性子が放出され、これがウラン238に捕獲されることでプルトニウム239などの同位体が生成される。プルトニウム239はウラン235を用いる発電用原子炉でも生成し、ウラン235と同じように核分裂を起こす。 プルトニウム239の臨界量は、すべての核燃料の中で最小である。稠密な球状とした場合の臨界量は約11kgで、直径は10.2cmほどになる。点火機構や、中性子反射体、爆縮構造を適切に選ぶことにより、より少ない量で臨界を達成することができる。この最適化には主権国家により支援される大規模な核開発組織が必要とされる。 プルトニウム239原子1個が核分裂することにより、207.1 MeV =3.318×10-11J のエネルギーが放出される。より身近な単位に換算すると、19.98TJ/mol =83.61TJ/kg、23,222,915kWh/kgとなる。 放出エネルギー源(プルトニウム239の熱核分裂の場合)放出エネルギー[MeV](平均値)核分裂断片の運動エネルギーとして 175.8 即発中性子の運動エネルギーとして 5.9 即発ガンマ線として 7.8 核分裂そのものによるエネルギー 189.5 β−粒子として 5.3 反ニュートリノとして 7.1 遅発ガンマ線として 5.2 核分裂生成物の崩壊に伴うエネルギーの総量 17.6 即発中性子の捕獲により放出されるエネルギー 11.5 熱中性子炉で放出される熱エネルギーの総量(反ニュートリノは寄与しない) 211.5
※この「核物理」の解説は、「プルトニウム239」の解説の一部です。
「核物理」を含む「プルトニウム239」の記事については、「プルトニウム239」の概要を参照ください。
「核物理」の例文・使い方・用例・文例
- 核物理のページへのリンク