高速増殖炉 FBRの形式

高速増殖炉

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/09/04 00:28 UTC 版)

FBRの形式

タンク型(プール型)とループ型の図

高速増殖炉には以下の三種類の形式がある。

ループ型
原子炉、一次主冷却系循環ポンプ、中間熱交換器をそれぞれ別の容器に納め、それらを配管でつないだもの。
  • 例:常陽(日)、もんじゅ(日)
タンク型(プール型)
原子炉、一次主冷却系循環ポンプ、中間熱交換器を一つのタンクの内に納めたもの。
  • 例:フェニックス(仏)、スーパーフェニックス(仏)、BN-600(露)、BN-800(露)
ハイブリッド型
タンク内で1つに収容されている設備を2つに分けたもの。ループ型とタンク型を併せたようなもの。

利点 

核燃料の効率的利用 

  • 核分裂を起こしやすいウラン235は天然に存在するウランの0.7%程度にしか過ぎず、約99.3%は核分裂をほとんど起こさないウラン238であるため、軽水炉ではウランが潜在的に持つエネルギーの0.5%程度しか使えない。プルサーマル利用でも0.75%にすぎない。しかし高速増殖炉によってウラン238をプルトニウムに転換できれば、核燃料サイクルが実現し、理論上ウラン資源の約60%をエネルギーとして使用出来るため、ウランの利用効率を飛躍的に高くできると考えられる[7]
  • MOX燃料を使える。
    • プルトニウムが使用できるため、使用済み核燃料由来のものや核兵器解体後のプルトニウムも有効利用できる。
    • ウランの濃縮が必要ない。

増殖

通常、軽水炉では燃料棒中のウラン235を熱中性子により核分裂させ、エネルギーを生成する。このとき消費したウラン235以上にプルトニウムが生成されることはなく、燃料棒中の核燃料は減少する。これは、熱中性子は高速中性子よりもウラン235やプルトニウムの核分裂を誘起しやすいが、燃料棒中のウラン238に捕獲されてプルトニウム239を生成する確率が低いためである。逆に高速中性子はウラン235やプルトニウムの核分裂を誘起しにくいが、ウラン238に捕獲されてプルトニウム239を生成する確率が高い。この性質を利用して、消費した燃料以上のプルトニウムを生成するように設計されたものが高速増殖炉である。

日本、フランス、中国など国内でのエネルギー使用量に比べ資源が少ない国で開発が推進されている。

高速増殖炉の転換比は、理論的には1.2から1.5の範囲と考えられている[8]

マイナーアクチノイドの燃焼

プルサーマル方式においてもほぼ同じMOX燃料を使用するが、MOX燃料にはプルトニウムより原子番号の大きい原子が含まれ、これらの元素の同位体による割合が増えていくことを「高次化」と呼ぶ。MOX燃料は再処理を繰り返すごとにアメリシウム241などのマイナーアクチノイドの割合が増えていくのだが、これらの原子核は中性子吸収断面積が非常に大きく、熱中性子を吸収しても核分裂せず、中性子を放出しないため、核分裂連鎖を媒介する中性子が減って原子核分裂反応が成立しなくなってしまう。この核種は化学/物理処理で分離が不可能な大変厄介な物質であり、アメリシウム241等のMAを分裂させられる高速増殖炉、または加速器駆動未臨界炉は長期的に見ると核燃料サイクル計画には必須の要素である[9]

その他 

  • 冷却材として使用される金属ナトリウムは沸点が高いため、軽水のように高圧を掛ける必要が無く、常圧で運転可能である。このことは、冷却材の減圧による沸騰を原因とする冷却材喪失事故 (LOCA: Loss Of Coolant Accident) がほぼ起きないことを意味しており、同時にその事故に関しては非常用炉心冷却装置 (ECCS: Emergency Core Cooling System) も必要ないことを意味している。[注 1]
  • 炉心が小型にでき、出力密度が高い。

問題点

技術的課題

ボイド係数

炉心を冷却する液体に含まれる気体の割合の変化により、炉心の反応度は影響を受ける。この現象を係数化したものをボイド係数と呼ぶ。ボイド係数が正の場合、冷媒に占める気体の割合が増えると冷媒としての性能が低下すると共に反応度が増大し、炉心の異常な発熱につながる。
軽水炉において、減速材と冷却材を兼ねる軽水は炉心付近で常に沸騰が発生しており、理論的には気泡混じりで本来の水よりも密度が低下した流体として扱われる。ボイドの割合が増えると減速材としての性能が低下するため、反応度は低下する。(ボイド係数は負)
一方、ナトリウム高速増殖炉で用いられる液体金属は通常の運用では沸騰しないが、万一発生した場合はボイド係数は正となる。このため、ボイド係数が負となるような炉心設計が強く求められる[10]。高速増殖炉もんじゅの場合、炉心の一部の領域についてボイド係数が正になっていると分析されている[11]
一方で沸騰によるボイド係数は正となった場合でも、炉心の外へ漏れだす中性子の増加(中性子が逃げるため核分裂連鎖反応が起こしづらくなる)や、核燃料の熱膨張による密度の低下など、ボイド係数以外の反応度効果があるため、原子炉全体としての反応度は負となるように設計されている。これは原子炉設計における重要な基本であり、これにより異常な反応度が原子炉に加わらないようになっている。
鉛ビスマス高速増殖炉の場合、鉛は原子番号が大きく断面積が大きい上、中性子を吸収せず反射するために、気泡が発生すると中性子が炉内から洩れる確率があがるため、ボイド効果は負に設計しやすい。

金属ナトリウム

技術的な最大の問題は、冷却材である金属ナトリウムの管理が難しいことである。金属ナトリウムは水や酸素に触れると高温を放って激しく酸化される。従って、その取り扱いには極めて難度の高い技術と、その技術を維持管理する持続可能な運用システムが必要不可欠となる。軽水は透明だが金属ナトリウムは不透明であり、これを用いると内部状態の計測が難しくなる。「もんじゅ」の停止は、配管からの金属ナトリウム漏出事故による。また、特に蒸気タービンに繋がる二次冷却系との間は、熱を伝えるための多数の薄い金属管を隔てて軽水と対向しているため、わずかな漏れでも大事故につながると考えられている。このような冷却系の取り扱いの難しさから、同型炉での事故例が多い[注 2]。ナトリウムの代わりに鉛・ビスマスを使用した方式では発火性はない。「もんじゅ」の廃炉検討時には、金属ナトリウムを炉から抜く事の困難さが指摘された。

燃料

日本での高速増殖炉用のMOX燃料は、六ヶ所再処理工場での製造が予定されているが、アクティブ試験が長期間継続したままであり本格稼働の開始予定は遅れている。ここでMOX燃料が生産できなければ、他国から輸入するか原子炉の稼動を見合わせることになる。

プルトニウムの挙動

プルトニウムの炉内での挙動に未解明な点がある。フランスのフェニックス (Phénix) では、原因不明の出力低下があり、その原因は未だに解明されていない。これがフランスがスーパーフェニックスから撤退する理由の一つであった[12]

緊急炉心冷却装置の欠如

ナトリウムと水の反応性のために、ナトリウム高速増殖炉には、緊急炉心冷却装置 (ECCS) を付けられない。「軽水炉の様に一次系が高圧でないから、「スリーマイル原子力発電所事故のような減圧によるLOCAが起きない事」から、ECCSは不要と説明されてきたが、「高速増殖炉で冷却材喪失事故は起きないと言えるのか?」と、批判者は指摘する。内圧が低くとも、腐食性の強いナトリウムの作用や、500℃を超える高温での連続運転、更には、構造材への放射線損傷が、配管破断を招く事は無いのか?と言う懸念が指摘されている[13]。尚、鉛ビスマス炉であれば、水と接触しても水素を出して燃えないので、LOCAに備えてECCSを取り付けることは可能である。
原子炉容器や一次冷却系の破損にそなえた対策として、ガードベッセルと呼ばれる設備が設けられている。これは原子炉容器や一次冷却系の機器を覆うようにカバーが取り付けられ、ナトリウムが漏れた場合でもここで止まるようになっている。そのため万が一原子炉容器や一次冷却系の破損が生じてもナトリウムの流失を防ぎ、ナトリウムの液面から炉心が露出することによるメルトダウン事故を防ぐよう工夫されている。
なお、高速増殖炉が苛酷事故として全炉心溶融事故(Bethe-Tait型事故)を起こすと、軽水炉の場合とは異なり、炉心のプルトニウム燃料が一箇所に集まることで即発臨界が発生する可能性は当初から指摘されている[14]

社会的課題

核兵器の材料
核兵器の材料となるプルトニウムを大量に加工・保有することに対して、国際的な懸念や批判がある。
標準的な核兵器を作るには純度の高いウラン235か、プルトニウム239が必要とされ、21世紀現在ではウラン濃縮を行うよりも、黒鉛炉重水炉、高速増殖炉のいずれかでプルトニウム239を生産する方法が最も現実的な手段となっている。ウラン238に対する中性子照射期間が長いほど「ウラン238が中性子を吸収してプルトニウム239になる反応」だけでなく「プルトニウム239が再度中性子を吸収してプルトニウム240に変化してしまう反応」が進んでしまう。商業用原子炉で一般的な軽水炉は、運転しながら燃料交換できないため、照射時間が長くなり、プルトニウム239の純度の高い「兵器級プルトニウム」を生産できず、兵器性能を著しく低下させるプルトニウム240の割合が高い「原子炉級プルトニウム」しか生産できない。(つまり日本の保有する大量の原子炉級プルトニウムは核兵器を作るのに適さない)
一方高速増殖炉は、原子炉が中性子を発生して、それを原子炉を覆うブランケットで受けて、ブランケットの中に入っている元素に中性子を浴びせて、別な元素に変化させる「核種変換炉」であり、ブランケットに核分裂性でないウラン238をいれて、核分裂性のプルトニウム239にすることができる。また、「ブランケットの内容物は、次々と早期交換したほうが、核燃料が沢山得られて得」である。そのためIAEAは、炉からの燃料棒の早期抜出しを「核武装準備行為」として厳しく監視している。発電目的ならば、燃料は長く発熱させたほうが得であり、「燃焼途中での燃料取り出し」は核兵器生産以外に理由が説明できないが、そのようなことはしていないためIAEAは「フランスや日本の増殖実験」に関しては認めてきた。
例えば、日本の「もんじゅ」は停止するまでの1年半の間に濃縮度96%以上のプルトニウム239がおよそ60kg程度生じていたと考えられ、プルトニウム240などの不純物を混ぜることで軍事転用への懸念を回避したかどうか、明らかにはなっていない[6][注 3]
輸送時の警備
プルトニウムを含むMOX燃料の輸送問題がある。プルトニウムは核兵器の原料であるため、輸送時にはテロリストやその支援国家などに核ジャックされる可能性があり[注 4]、常にこれに備える必要がある。海上輸送が必要となる日本では、その脅威に備えるため新たに世界最大の巡視船であるしきしまを建造しなければならなかった。
ウラン燃料は、ウラン235の半減期が約7億年と長いことから通常状態において殆ど放射線を出さないのに対し、プルトニウムを含む燃料は、プルトニウム239の半減期が約2万4千年とウラン235と比較して短いため強い放射能を持ち、プルトニウムの使用やその輸送に対する反発の声が高まっている。

経済的課題

資源
1970年代初め、ローマクラブレポートが出た頃までは、石油は安価なまま急速に掘りつくされると考えられていたし、風力や太陽は当時非効率で到底20-30年で大電力を供給できるようには思われておらず、核融合は50年先と思われていて、海水からのウラン吸着の研究など存在しなかった。当時はすべて右肩上がりの時代で、中国・インドなど発展途上国の経済成長も直ぐに始まり、化石エネルギー枯渇で急速に危機に直面すると思われていた。
現実には、予想に反して原油価格は上昇し、オイルショックを経て原油は石炭、天然ガスに取って代わられ主要な発電手段ではなくなった。そして現在の掘削技術の向上で化石燃料の推定埋蔵量は毎年上がっている。また、中国・インドの経済成長による化石燃料の減耗加速は2000年代までずれ込んだ。そうしているうち核融合も実証炉ITERの建設まで具体的道程が描ける所まで進化した。ただし、核融合炉建設の遅延の懸念も存在する[15]
リン鉱石等に含まれるウランの回収等も計画されており利用可能なウランの量が増える可能性がある[16][17]。約45億トン存在する海水ウラン吸着の研究も進んでいるが、いまだ既存方法の5倍から10倍のコストがかかる[18]
このような資源状況で前述の日仏など高速増殖炉の増殖機能を重視せず今後の開発を高速炉とする国も出てきている。
再生可能エネルギーとの比較
原子力はその登場当初「唯一の火力に代わり得るエネルギー」と言われていた。原子力はそのエネルギー量の膨大さ故に、世界的な政治経済情勢を大きく変える要素である。政治経済が絡むため、賛成派、反対派が様々な活動を行っており、そういった活動の中、原子力は電力用としては再生可能エネルギー時代までの数十年間の過渡期エネルギーであると主張されることもある[19]
現在、風力や太陽光などの再生可能エネルギーの発電コストが急激に低下しており太陽光発電は2030年には、軽水炉原子力発電に追いつけるコストになると看做されるようになっている[20]。平成27年の資源エネルギー庁発電コストワーキンググループの「長期エネルギー需給見通し小委員会に対する発電コスト等の検証に関する報告」 によれば、風力発電、太陽光発電のコストは原子力発電の2倍程度であり、今後さらにその差は縮小すると考えられる[21]。平成29年度時点で、大規模太陽光発電は設備1kWあたり20万円以下で可能であり[22]、100万kWの発電設備では2000億円以下ですむ。前述の発電コストワーキンググループの議論によれば100万kW級原子力発電所の建設に3700億円前後かかり、寿命が40年間以上の運転維持費に年約100億円、廃炉にも700億円以上が軽水炉型ですら見込まれることから、すでに原子炉の経済性は無いとする説もある。ただし太陽光発電の稼働率は設備kWに対して約15%にすぎないが、原子力発電所では60-80%が想定されている。[要出典]



注釈

  1. ^ 福島第一原子力発電所事故では、全電源喪失事故で、残留熱除去系が働かず、2号機、3号機はECCSによって数日持ちこたえた。つまり、ECCSは「LOCA専用」というわけではない。
  2. ^ 金属ナトリウムが漏出したときのために、循環系の設置される区域は窒素ガスが充填される。そのため、人間が容易にその区域に入ることが出来ず、緊急時のメンテナンス性が損なわれている。
  3. ^ プルトニウムが核兵器の原料となる危険があり、米国のカーター政権が高速増殖炉から撤退することを決めたのは、プルトニウムの拡散防止が理由の一つであった
  4. ^ 兵器級プルトニウムによって高性能な核兵器を作る目的だけに限らず、核廃棄物をばら撒く「ダーティボム」(汚い爆弾)としてなら、使用前・使用後にかかわらずあらゆる核物質が利用される恐れがある。
  5. ^ GNEPプロジェクトに参加する19か国の内訳は、米国、台湾、フランス、日本、ロシア、オーストラリア、ブルガリア、ガーナ、ハンガリー、ヨルダン、カザフスタン、リトアニア、ポーランド、ルーマニア、スロヴェニア、ウクライナ、イタリア、カナダ、韓国である。
  6. ^ ASTRIDは燃料を自前で賄う self-generating 反応炉ではあるものの、増殖率が低く仰えられているので厳密には高速増殖炉ではなく、単に高速炉である。詳細は世界原子力協会発行の「Fast Neutron Reactors」を参照。

出典

  1. ^ 高速増殖炉 (03-01-01-01) - ATOMICA
  2. ^ 高速炉開発の方針(案)原子力関係閣僚会議(第6回)資料1 2016年12月21日
  3. ^ a b “高速実証炉断念。「原発大国」フランスは曲がり角”. 朝日新聞. (2019年9月6日). https://webronza.asahi.com/politics/articles/2019090600005.html 2019年9月17日閲覧。 
  4. ^ 鹿志村芳範、安藤秀樹、「常陽」の実績から考察した高速炉の放射線管理 保健物理 Vol.30 (1995) No.1 P19-26, doi:10.5453/jhps.30.19
  5. ^ FaCTおよびFSの経緯および概要
  6. ^ a b 山田克哉著 『日本は原子爆弾を作れるのか』、PHP研究所、2009年1月30日第1版第1刷発行、ISBN 9784569706443
  7. ^ なぜ高速増殖炉の研究開発が必要か?-詳細-国立研究開発法人日本原子力研究開発機構
  8. ^ 転換比 ATOMICA
  9. ^ 労多くして益少なし―不必要な「プルサーマル」 舘野淳 (PDF)
  10. ^ 高速炉の安全性”. 2010年4月9日閲覧。
  11. ^ 20020400原子力安全白書 平成13年版 1_2_2 高速増殖炉”. 2010年4月7日閲覧。
  12. ^ 高速増殖炉スーパーフェニックスの即時閉鎖(1998年12月30日) (14-05-02-12)”. 2010年4月8日閲覧。
  13. ^ 高木仁三郎『プルトニウムの恐怖』(岩波新書・1981年)159~160頁
  14. ^ 高速増殖炉 (1960) p.2
  15. ^ 国際熱核融合炉の建設さらに5年遅れ、巨額のコスト超過も=独誌” (2015年11月12日). 2015年11月21日閲覧。
  16. ^ 原子力エネルギー の展望”. 2015年11月21日閲覧。
  17. ^ 原子力白書 第3章 民間および国立研究機関における研究”. 2015年11月21日閲覧。
  18. ^ 原子力の現実 〜 今や商業化前夜の核燃料サイクルと、夢の海水ウラン研究開発huffingtonpost jp 2016年11月08日
  19. ^ 原発は過渡期のエネルギー 代替技術確立へ日米欧結集を”. 2015年5月7日閲覧。
  20. ^ 2030 年に向けた太陽光発電ロードマップ”. 2015年5月7日閲覧。
  21. ^ 長期エネルギー需給見通し小委員会に対する発電コスト等の検証に関する報告 (PDF)”. 2015年5月7日閲覧。
  22. ^ 太陽光発電・地熱発電・中小水力発電・バイオマス発電について資源エネルギー庁調達価格等算定委員会(第34回)配布資料2 P15 (2017年12月27日)
  23. ^ 原子力にいま起こっているイノベーション(前編)~次世代の原子炉はどんな姿?資源エネルギー庁2020年8月20日
  24. ^ GNEP
  25. ^ 三菱重工業は米国エネルギー省 (DOE) と原子力GNEP計画の契約を締結
  26. ^ 三菱重工と日本原燃 高速炉、米で合併 仏アレバと国際標準狙い[リンク切れ]
  27. ^ Nuclear Power Reactor Details - PHENIX”. 国際原子力機関. 2011年12月11日閲覧。
  28. ^ World’s most powerful fast neutron reactor starts supplying electricity to grid
  29. ^ a b ロシア:試運転中の80万kW級高速炉が定格出力で運転開始”. 一般社団法人 日本原子力産業協会. 2016年8月19日閲覧。
  30. ^ a b c Russia to build 11 new nuclear reactors by 2030”. World Nuclear Association. 2016年8月22日閲覧。
  31. ^ ロシア:80万kW級の高速実証炉「BN-800」が営業運転開始”. 一般社団法人 日本原子力産業協会. 2016年11月2日閲覧。
  32. ^ 高速増殖炉サイクルに関する国際的な研究開発の現状 (PDF)
  33. ^ 高速炉サイクル技術の国際動向 (PDF)
  34. ^ 高速炉の稼動で、ロシアでクリーンエネルギーの時代が始まる (2014/6/27) - RT
  35. ^ Russia postpones BN-1200 in order to improve fuel design
  36. ^ ロシアの高速炉サイクル開発戦略日本原子力研究開発機構 平成29年10月31日
  37. ^ インドの原子力発電計画と核燃料サイクルの見通し (PDF)
  38. ^ 日本原子力研究開発機構 「世界の高速増殖炉開発の実績は」 (PDF)
  39. ^ 福建省・霞浦で60万kWの高速実証炉を本格着工電気事業連合会 海外電力関連トピックス情報2018年1月22日
  40. ^ 世界の高速炉開発の動向 - 日本原子力研究開発機構 (PDF)


「高速増殖炉」の続きの解説一覧



高速増殖炉と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「高速増殖炉」の関連用語

高速増殖炉のお隣キーワード

   

英語⇒日本語
日本語⇒英語
   
検索ランキング



高速増殖炉のページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの高速増殖炉 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2020 Weblio RSS