Integral calculusとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > Integral calculusの意味・解説 

積分法

(Integral calculus から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/11/28 02:54 UTC 版)

関数の定積分は、そのグラフによって囲まれる領域の符号付面積として表すことができる。
積分とは何か?(アニメーション)

積分法(せきぶんほう、: integral calculus)は、微分法とともに微分積分学で対をなす主要な分野である。

説明での数式の書き方は広く普及しているライプニッツの記法に準ずる。

実数直線上の区間 [a, b] 上で定義される実変数 x の関数 f定積分(独: bestimmtes Integral、英: definite integral、仏: intégrale définie)

x0 から 1 までの積分の近似:5個のは右上の点を標本点として上からの評価を与え、10個のは左上の点を標本点として下からの評価を与える。

手始めに、x = 0 から x = 1 までの間で f (x) = x によって与えられる曲線 y = f (x) を考え、

x = 0 から x = 1 までの区間において f の下にある領域の面積はいくらか

という問いを立てて、この(未知の)面積を f積分と呼んで

リーマン和

実数 aba < b であるとき、区間 E = [a, b]分割とは、

リーマン和が収斂する様子の模式図

区間 E の点付き分割 Δ* = {(Ei, ξi) : Ei = [xi−1, xi], ξiEi} があたえられたとき、

ある分割に対する下ダルブー和および上ダルブー和
リーマン=ダルブー積分(青)とルベーグ積分(赤)

リーマン積分は広い範囲の関数や応用上重要な状況(および理論的に興味深い状況)では定義されないことも多い。例えば、鉄骨の密度を積分してその質量を得ることはリーマン積分で容易に求められるが、その上に静止している鉄球にまでは適応することができない。これが動機となって、より広い範囲の関数を積分することのできる新しい定義が生み出された(Rudin 1987)。特にルベーグ積分は、重み付き和の重み付けの方に注目することによってきわめて柔軟な性質を持つに至った。

ルベーグ積分の定義は測度 μ を考えることから始まる。最も単純な場合は、区間 A = [a, b]ルベーグ測度 μ(A) を区間の幅 μ(A) ≔ ba で定義するもので、従ってルベーグ積分は、(狭義)リーマン積分と(両者が存在する限りは)一致する。より複雑な場合には、連続性も持たず、区間とは全く類似点の無いような、高度に断片化した様々な集合も測度を測ることができる。

このような柔軟性を十分に引き出すために、ルベーグ積分は重み付き和に対してリーマン積分とは「逆」なアプローチをとる。Folland (1984, p. 56)に言わせると、「 f のリーマン積分を計算するには領域 [a, b] を小区間に分割する」が、一方ルベーグ積分は「実質的に f の値域を分割する」ものである。

よくある仕方では、まず可測集合 A指示関数の積分の定義を

曲面の下にある体積としての二重積分

区間以外の積分領域を考えることもできる。一般に写像 f の集合 E 上でとった積分を

線積分は曲線に沿って元を足し合わせる

積分の概念はもっと一般の積分領域にも拡張することができる。例えば曲線や曲面を積分領域とする積分は、それぞれ線積分や面積分と呼ばれる。これらはベクトル場を扱うような物理学に応用を持つ。

線積分曲線に沿って評価された関数の積分である。線積分にも様々なものがあり、特に閉曲線に関する線積分を周回積分などとも呼ぶ。

積分の対象となる関数はスカラー場であるかもしれないし、ベクトル場であるかもしれない。線積分の値というのは、曲線上の各点における場の値に曲線上の適当なスカラー関数(普通は弧長、あるいはベクトル場に対しては曲線における接ベクトルとの内積)を重みとして掛けたものの和である。この重み付けこそが、線積分と通常の区間上で定義される積分とを区別するものである。物理学における簡単な公式の多くは、線積分を用いることで自然に連続的な類似対応物に書き換えることができる。例えば、力学における仕事 F と移動距離 s との積(ベクトル量としての点乗積)

面積分は曲面を微小な面素に分割して足し合わせることの極限として定義される。

面積分は空間内の曲面の上で定義される定積分で、線積分の二次元的な類似物である。積分される関数はやはりスカラー場かもしれないしベクトル場かもしれない。面積分の値というのは、曲面上の各点における場の値の総和であり、曲面を面素に分割することによって得られるリーマン和の極限として構成される。

面積分の応用例としては、曲面 S 上のベクトル場 v(つまり、S の各点 x に対して v(x) がベクトル)が与えられているとき、S を通過する流体で x における流体の速度が v(x) で与えられる状況を考えればよい。流束は単位時間当たりに S を通過する流体の量として定義される。流束を求めるためには、各点で v と単位法ベクトルとの点乗積をとる必要があり、その結果得られたスカラー場を曲面上で積分した

出典は列挙するだけでなく、脚注などを用いてどの記述の情報源であるかを明記してください。 記事の信頼性向上にご協力をお願いいたします。2015年12月

関連項目

外部リンク

オンライン本




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「Integral calculus」の関連用語

Integral calculusのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



Integral calculusのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの積分法 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS