ロピタルの定理とは? わかりやすく解説

Weblio 辞書 > 固有名詞の種類 > 方式・規則 > 理論・法則 > 定理・公理 > 定理 > ロピタルの定理の意味・解説 

ロピタルの定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/07/15 02:32 UTC 版)

ロピタルの定理 (ロピタルのていり、: l'Hôpital's rule) [注 1]とは、微分積分学において不定形英語版極限微分を用いて求めるための定理である。ベルヌーイの定理 (英語: Bernoulli's rule) と呼ばれることもある。

本定理を (しばしば複数回) 適用することにより、不定形の式を非不定形の式に変換し、その極限値を容易に求めることができる可能性がある。

概要

ロピタルの定理は、簡単には c(-∞≦c≦∞)を含むある区間 I があり、関数 f,g はその内部で微分可能で、


ロピタルの定理

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/10/22 11:16 UTC 版)

平均値の定理」の記事における「ロピタルの定理」の解説

詳細は「ロピタルの定理」を参照 コーシーの平均値の定理から極限をとると、系としてロピタルの定理(またはベルヌーイの定理)が導かれるf(x), g(x) を f(a) = g(a) = 0 でありかつ a の十分近くで 0 にならない微分可能な関数とするとき、以下の定理を得る。 lim x → a f ( x ) g ( x ) = lim x → a f ( x ) − f ( a ) g ( x ) − g ( a ) = lim x → a f ′ ( x ) g ′ ( x ) {\displaystyle \lim _{x\to a}{\frac {f(x)}{g(x)}}=\lim _{x\to a}{\frac {f(x)-f(a)}{g(x)-g(a)}}=\lim _{x\to a}{\frac {f'(x)}{g'(x)}}} 左の等号は f(a) = g(a) = 0 による。右の等号コーシーの平均値の定理よる。

※この「ロピタルの定理」の解説は、「平均値の定理」の解説の一部です。
「ロピタルの定理」を含む「平均値の定理」の記事については、「平均値の定理」の概要を参照ください。

ウィキペディア小見出し辞書の「ロピタルの定理」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ



固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「ロピタルの定理」の関連用語

ロピタルの定理のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



ロピタルの定理のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのロピタルの定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの平均値の定理 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2025 GRAS Group, Inc.RSS