積分方程式
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/02/13 09:10 UTC 版)
積分方程式(せきぶんほうていしき、Integral equation)は、数学において、未知の関数が積分の中に現れるような方程式である[1][2][3][4][5][6]。積分方程式と微分方程式には密接な関係があり、そのどちらでも問題を定式化することができる場合もある[1][2]。
積分方程式は次の3種類の分類方法がある[1][2][3]。この分類によれば、8種類の積分方程式が存在する。
- 積分の上限および下限が固定の場合、フレドホルム積分方程式と呼ばれる。また、積分の上限・下限の片方が変数の場合、ヴォルテラ積分方程式と呼ばれる[7][8]。
- 未知の関数が積分の中にのみ現れる場合、第一種積分方程式と呼ばれ[3]、未知の関数が積分の中にも外にも現れる場合、第二種積分方程式と呼ばれる[3]。
- 既知の関数 f (下記参照)が恒等的に 0 の場合、同次積分方程式と呼ばれ、f が 0 でない場合、非同次積分方程式と呼ばれる。
4種類の積分方程式(同次・非同次方程式をまとめた)の例として以下のように書ける。
ただし
外部リンク
- 『積分方程式の解き方』 - 高校数学の美しい物語