速度
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/04/01 05:29 UTC 版)
角速度
質点は大きさを持たないが、一般の物体は大きさを持つため、回転運動が定義される。単位時間当たりの回転量を角速度という。2次元空間(平面)では、回転面は 1 つだけなので、スカラー量である。3次元空間においては回転の中心が進む方向に対して右ねじの向きを正とするベクトル量として定義される。
平均速度と瞬間速度
平均速度
単位時間当たりの変化量、すなわち[対象の変化量] ÷ [経過時間]によって求められる速度は平均速度(あるいは平均速度ベクトル)と呼ばれる。
例えば物体の運動について、ある時刻t1における物体の位置ベクトルをx1、時刻t2のときの物体の位置ベクトルをx2とすると、この時間区分における物体の平均速度は、
で表される。
また、この平均速度の大きさを平均の速さと呼ぶ。
瞬間速度
平均速度を観測する際に、時間区分t2 -t1を十分小さくし 0 に近づけていくとき、各時点における速度とみなせるものが観測でき、これを時刻tにおける瞬間速度[6]と呼ぶ。
時刻t、物体の座標xの変化量をそれぞれΔt , Δxとすると、瞬間速度vは、
と表される。
また、この瞬間速度の大きさを瞬間の速さと呼ぶ。
中辺は平均速度に対し時間区分の長さを 0 とする極限をとったものである。つまり物体の瞬間速度とは、その物体の位置座標を時間tの関数x (t )とみなしたとき、それを時間tについて微分したものである。
通常は、瞬間速度のことを指して単に速度と呼ぶことが多い。また例えば、瞬間速度の微分(すなわち速度変化の瞬間速度)として加速度を考えることができる。
算数における速さ
日本の小学校における算数教育の授業では前述の「平均速度」の式(速度=距離÷時間)を習う。式変形は習っていないので距離と時間を求める式は別の公式として習得する。
この三つの公式を覚えるための方法として、「は・じ・き(速さ、時間、距離)」「み・は・じ(道のり、速さ、時間)」として、教科書では頻繁に使われ、「はじきの法則」と呼ばれる[7]。
注釈
出典
- ^ 国際単位系(SI)第9版(2019)、p.108 表5
- ^ The International System of Units p.139、Table 5.、Derived quantityとして、「speed, velocity」とある。
- ^ 計量法 第2条第1項第1号
- ^ 計量単位令 別表第1、項番14。
- ^ Wilson, Edwin Bidwell (1901). Vector analysis: a text-book for the use of students of mathematics and physics, founded upon the lectures of J. Willard Gibbs. pp. 125
- ^ 英: instant velocity
- ^ 松岡隆, 佐伯昭彦, 秋田美代「小学校教員養成における教科専門科目「算数」の教材例 (数学教師に必要な数学能力とその育成法に関する研究)」『数理解析研究所講究録』第1867巻、京都大学数理解析研究所、2013年12月、89-97頁、CRID 1050564285761501056、hdl:2433/195410、ISSN 1880-2818“p.91(円グラフ様の図がある。”
速度と同じ種類の言葉
- >> 「速度」を含む用語の索引
- 速度のページへのリンク