植物の進化 種子の進化

植物の進化

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/02 21:41 UTC 版)

種子の進化

化石種子トリゴノカルプス Trigonocarpus

初期の陸上植物はシダのような方法で繁殖した。胞子が小さな配偶体に成長し、精子を作りだし、それが湿った土を泳いで、自分のもしくは別の個体の雌性生殖器官(造卵器)に到達し、そこで卵と融合し胚を作る。それは胞子体に成長する[54]

生殖のこの方法は、初期の植物を湿った環境に制限した。精子が目標まで遊泳可能な程度の水分が必要だったからである。それで、初期の陸上植物は、水辺や小川の岸の低地に生息域が限定された。異形胞子性の発達は、この制限から植物を解放した。

異形胞子性の植物は、その名の通り、小胞子と大胞子の2つのサイズの胞子を持つ。これらは成長し、それぞれ小配偶子と大配偶子を形成する。このシステムは種子へと繋がる。究極的には、大配偶子は一つの巨大四分胞子だけが含まれる。そして胚珠となるには、もとの巨大四分胞子の3つまでは放棄してもよく、一つの胞子嚢の中に一つの大胞子だけが残される。

胚珠への移行は、大胞子が出芽している間も胞子嚢に「詰められる」ことによって進展していった。そして、大配偶体は耐水性の殻に含まれることになった。その殻は、種子の体積の大部分を占める。小胞子から出芽した配偶体である小配偶体は散布に使われ、受精できる大配偶体に到着したときに、乾燥しやすい精子を放出するためだけに使われる[24]

小葉植物とスフェノフィルム類は、あと少しで種子を獲得するまでは至らなかった。LepidocarponAchlamydocarponなどの化石小葉植物の大胞子は、直径1 cmに達しており、栄養組織に囲まれ、胞子体内で大配偶体へと発芽していた。しかし、非常に小さな隙間ではあるが大胞子が大気に接し、珠心(内側の胞子を覆う層に包まれている部分)が胞子を覆わないため真の種子とは言えない。その結果として、乾燥に対する耐性が不十分であり、精子が大胞子の造卵器に到達するために掘り進む必要がなかった[24]

真の種子を持った最初の「種子植物」は、シダ種子類である。この名称は、その葉がシダの葉と類似していたことによるものだが、必ずしも大葉シダ植物と近い系統関係にあるわけではない。種子植物の最古の化石証拠は、後期デボン紀からのもので、それは前裸子植物として知られるグループから進化した。これら初期の種子植物は、木から、つる性の灌木などで、一方初期の前裸子植物も木本性でシダ様の葉を持っており、非常によく似ていた。これらは、胚珠は持っていたが、球果(松かさなど)や果実のようなものは持っていなかった。初期の種子の進化を追うことは難しいが、単純なトリメロフィトン類から、対称胞子の前裸子植物アネウロフィトン類 Aneurophytalesなどへの系譜を追うことはできる[24]

この種子の形式は、基本的に裸子植物に共有されている。種子はほとんど木質あるいは果肉質(イチイ類などの場合)の球果に包まれているが、完全に包まれてはいない。被子植物は、心皮に完全に包まれている種子を持つ唯一の分類群である。種

完全に包まれた種子によって、休眠という新たな能力が見いだされた。胚は完全に外気から遮断されて、乾燥から保護されているために、発芽前の乾燥を何年も耐えることができる。後期石炭紀の裸子植物の種子に、胚を含んでいるものが発見された。これは、受精と発芽の間に、長い期間があることを示している[60]。この時期は、地球が温暖期になった頃と重なり、乾燥度が上昇している。このことは、休眠が乾燥気候への対応として発生したことを示唆する。湿潤期まで発芽を待つことが、利点になる[60]。この進化的革新は大きな可能性を開いた。乾燥山地など、以前には生育に不適当だったエリアが、許容できるものになり、木に覆われることになった[60]

種子は、散布にも利点をもたらした。それは受精した配偶体の成功率も増大させた。また胚と栄養が一緒に入っているので、生存が不適な環境でも、自分自身で栄養を獲得できるだけの大きさまで、すみやかに成長することができることになった[54]。たとえば、胚乳がなければ、苗木は乾燥した状態では地下水面に届くほど根を伸ばす余裕を持っていない[54]。同様に、薄暗い下藪に落ちた種子は、自己維持ができるまでの日光を得るために、すみやかに高いところまで育たなくてはならないので、余分のエネルギーを必要とする[54]。種子植物はこれらの利点により、初期の森林の主要な植物であったアーケオプテリスを生態学的に圧倒した[54]


  1. ^ "The oldest fossils reveal evolution of non-vascular plants by the middle to late Ordovician Period (~450-440 m.y.a.) on the basis of fossil spores" Paul F. Ciesielski. “Transition of plants to land” (英語). 2011年3月6日閲覧。
  2. ^ Rothwell, G. W., Scheckler, S. E. & Gillespie, W. H. (1989), Elkinsia gen. nov., a Late Devonian gymnosperm with cupulate ovules”, Botanical Gazette 150: 170-189, http://www.jstor.org/pss/2995234 
  3. ^ a b c d e f g h i j k l m n Raven, J.A.; Edwards, D. (2001), “Roots: evolutionary origins and biogeochemical significance”, J. Exp. Bot. 52 (90001): 381–401, doi:10.1093/jexbot/52.suppl_1.381, PMID 11326045, http://jxb.oxfordjournals.org/cgi/content/full/52/suppl_1/381 
  4. ^ a b P. Kenrick, P.R. Crane (1997), The origin and early diversification of land plants. A cladistic study., Washington & London: Smithsonian Institution Press, ISBN 1-56098-729-4 
  5. ^ “Molecular evidence for the early colonization of land by fungi and plants”. Science 293 (5532): 1129–33. (August 2001). doi:10.1126/science.1061457. PMID 11498589. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=11498589. 
  6. ^ Battison, Leila; Brasier, Martin D. (August 2009). "Exceptional Preservation of Early Terrestrial Communities in Lacustrine Phosphate One Billion Years Ago" (PDF). In Smith, Martin R.; O'Brien, Lorna J.; Caron, Jean-Bernard (eds.). Abstract Volume. International Conference on the Cambrian Explosion (Walcott 2009). Toronto, Ontario, Canada: The Burgess Shale Consortium (published 31 July 2009). ISBN 978-0-9812885-1-2 {{cite conference}}: 不明な引数|name-list-format=が空白で指定されています。 (説明)
  7. ^ Knauth, L. Paul; Kennedy, Martin J. (2009). “The late Precambrian greening of the Earth”. Nature. doi:10.1038/nature08213. ISSN 0028-0836. 
  8. ^ a b c d e Gray, J.; Chaloner, W. G.; Westoll, T. S. (1985), “The Microfossil Record of Early Land Plants: Advances in Understanding of Early Terrestrialization, 1970-1984”, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences (1934-1990) 309 (1138): 167–195, doi:10.1098/rstb.1985.0077, http://links.jstor.org/sici?sici=0080-4622(19850402)309%3A1138%3C167%3ATMROEL%3E2.0.CO%3B2-E 2008年4月26日閲覧。 
  9. ^ Wellman, C. H.; Gray, J. (2000). “The microfossil record of early land plants”. Philosophical Transactions of the Royal Society B: Biological Sciences 355 (1398): 717–732. doi:10.1098/rstb.2000.0612. ISSN 0962-8436. 
  10. ^ Rubinstein, C. V.; Gerrienne, P.; de la Puente, G. S.; Astini, R. A.; Steemans, P. (2010). “Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana)”. New Phytologist 188 (2): 365–369. doi:10.1111/j.1469-8137.2010.03433.x. ISSN 0028646X. 
  11. ^ Wellman, Charles H.; Osterloff, Peter L.; Mohiuddin, Uzma (2003). “Fragments of the earliest land plants”. Nature 425 (6955): 282–285. doi:10.1038/nature01884. ISSN 0028-0836. 
  12. ^ Kump, Lee R.; Pavlov, Alexander; Arthur, Michael A. (2005). “Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia”. Geology 33 (5): 397. doi:10.1130/G21295.1. ISSN 0091-7613. 
  13. ^ Butterfield, N. J. (2009). “Oxygen, animals and oceanic ventilation: an alternative view”. Geobiology 7 (1): 1–7. doi:10.1111/j.1472-4669.2009.00188.x. ISSN 14724677. 
  14. ^ Steemans, P.; Herisse, A. L.; Melvin, J.; Miller, M. A.; Paris, F.; Verniers, J.; Wellman, C. H. (2009). “Origin and Radiation of the Earliest Vascular Land Plants”. Science 324 (5925): 353–353. doi:10.1126/science.1169659. ISSN 0036-8075. 
  15. ^ Tomescu, A. M. F. (2006). “Wetlands before tracheophytes: Thalloid terrestrial communities of the Early Silurian Passage Creek biota (Virginia)”. Wetlands Through Time. doi:10.1130/2006.2399(02). ISBN 9780813723990. http://www.humboldt.edu/biosci/docs/faculty/TomescuRothwell2006.pdf 2014年5月28日閲覧。. 
  16. ^ Scott, A. C.; Glasspool, I. J. (2006). “The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration”. Proceedings of the National Academy of Sciences 103 (29): 10861–10865. doi:10.1073/pnas.0604090103. ISSN 0027-8424. 
  17. ^ a b c d Stewart, W.N. and Rothwell, G.W. (1993), Paleobotany and the evolution of plants (Second edition ed.), Cambridge, UK: Cambridge University Press, ISBN 0-521-38294-7 
  18. ^ a b c d C. Kevin Boyce (2008), “How green was Cooksonia? The importance of size in understanding the early evolution of physiology in the vascular plant lineage”, Paleobiology 34: 179, doi:10.1666/0094-8373(2008)034[0179:HGWCTI]2.0.CO;2 
  19. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah . doi:10.2307/3691719. 
  20. ^ . JSTOR 2400461. 
  21. ^ a b c d e f g h . JSTOR 2408738. 
  22. ^ “Evidence for lignin-like constituents in early silurian (llandoverian) plant fossils”. Science 209 (4454): 396–7. (July 1980). doi:10.1126/science.209.4454.396. PMID 17747811. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=17747811. 
  23. ^ Qiu, Y.L.; Li, L.; Wang, B.; Chen, Z.; Knoop, V.; Groth-malonek, M.; Dombrovska, O.; Lee, J.; Kent, L.; Rest, J.; Others, (2006), “The deepest divergences in land plants inferred from phylogenomic evidence”, Proceedings of the National Academy of Sciences 103 (42): 15511, doi:10.1073/pnas.0603335103, PMC 1622854, PMID 17030812, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1622854 
  24. ^ a b c d e f g h i Stewart, W.N.; Rothwell, G.W. (1993), Paleobiology and the evolution of plants, Cambridge University Press, pp. 521pp 
  25. ^ Zosterophyllophytes
  26. ^ Rickards, R.B. (2000), “The age of the earliest club mosses: the Silurian Baragwanathia flora in Victoria, Australia” (abstract), Geological Magazine 137 (2): 207–209, doi:10.1017/S0016756800003800, http://geolmag.geoscienceworld.org/cgi/content/abstract/137/2/207 2007年10月25日閲覧。 
  27. ^ a b c Kaplan, D.R. (2001), “The Science of Plant Morphology: Definition, History, and Role in Modern Biology”, American Journal of Botany 88 (10): 1711–1741, doi:10.2307/3558347, http://links.jstor.org/sici?sici=0002-9122(200110)88%3A10%3C1711%3ATSOPMD%3E2.0.CO%3B2-T 2008年1月31日閲覧。 
  28. ^ Taylor, T.N.; Hass, H.; Kerp, H.; Krings, M.; Hanlin, R.T. (2005), “Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism” (abstract), Mycologia 97 (1): 269–285, doi:10.3852/mycologia.97.1.269, PMID 16389979, http://www.mycologia.org/cgi/content/abstract/97/1/269 2008年4月7日閲覧。 
  29. ^ a b c Boyce, C.K.; Knoll, A.H. (2002), “Evolution of developmental potential and the multiple independent origins of leaves in Paleozoic vascular plants”, Paleobiology 28 (1): 70–100, doi:10.1666/0094-8373(2002)028<0070:EODPAT>2.0.CO;2 
  30. ^ Hao, S.; Beck, C.B.; Deming, W. (2003), “Structure of the Earliest Leaves: Adaptations to High Concentrations of Atmospheric CO2”, International Journal of Plant Sciences 164 (1): 71–75, doi:10.1086/344557 
  31. ^ Berner, R.A.; Kothavala, Z. (2001), “Geocarb III: A Revised Model of Atmospheric CO2 over Phanerozoic Time” (abstract), American Journal of Science 301 (2): 182, doi:10.2475/ajs.301.2.182, http://ajsonline.org/cgi/content/abstract/301/2/182 2008年4月7日閲覧。 
  32. ^ Beerling, D.J.; Osborne, C.P.; Chaloner, W.G. (2001), “Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era”, Nature 410 (6826): 287–394, doi:10.1038/35066546, PMID 11268207 
  33. ^ Taylor, T.N.; Taylor, E.L. (1993), The biology and evolution of fossil plants 
  34. ^ Shellito, C.J.; Sloan, L.C. (2006), “Reconstructing a lost Eocene paradise: Part I. Simulating the change in global floral distribution at the initial Eocene thermal maximum”, Global and Planetary Change 50 (1-2): 1–17, doi:10.1016/j.gloplacha.2005.08.001, http://linkinghub.elsevier.com/retrieve/pii/S0921818105001475 2008年4月8日閲覧。 
  35. ^ Aerts, R. (1995), “The advantages of being evergreen”, Trends in Ecology & Evolution 10 (10): 402–407, doi:10.1016/S0169-5347(00)89156-9 
  36. ^ Labandeira, C.C.; Dilcher, D.L.; Davis, D.R.; Wagner, D.L. (1994), “Ninety-seven million years of angiosperm-insect association: paleobiological insights into the meaning of coevolution”, Proceedings of the National Academy of Sciences of the United States of America 91 (25): 12278–12282, doi:10.1073/pnas.91.25.12278, PMC 45420, PMID 11607501, http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=45420 
  37. ^ Boyce, K.C.; Hotton, C.L.; Fogel, M.L.; Cody, G.D.; Hazen, R.M.; Knoll, A.H.; Hueber, F.M. (May 2007), “Devonian landscape heterogeneity recorded by a giant fungus” (PDF), Geology 35 (5): 399–402, doi:10.1130/G23384A.1, http://geology.geoscienceworld.org/cgi/reprint/35/5/399.pdf 
  38. ^ Stein, W.E.; Mannolini, F.; Hernick, L.V.; Landing, E.; Berry, C.M. (2007), “Giant cladoxylopsid trees resolve the enigma of the Earth's earliest forest stumps at Gilboa.”, Nature 446 (7138): 904–7, doi:10.1038/nature05705, PMID 17443185 
  39. ^ Retallack, G.J.; Catt, J.A.; Chaloner, W.G. (1985), “Fossil Soils as Grounds for Interpreting the Advent of Large Plants and Animals on Land [and Discussion”], Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 309 (1138): 105–142, doi:10.1098/rstb.1985.0074, http://links.jstor.org/sici?sici=0080-4622(19850402)309%3A1138%3C105%3AFSAGFI%3E2.0.CO%3B2-5 2008年4月7日閲覧。 
  40. ^ Dannenhoffer, J.M.; Bonamo, P.M. (1989), Rellimia thomsonii from the Givetian of New York: Secondary Growth in Three Orders of Branching”, American Journal of Botany 76 (9): 1312–1325, doi:10.2307/2444557, http://links.jstor.org/sici?sici=0002-9122(198909)76:9%3C1312:RTFTGO%3E2.0.CO;2-S 2008年4月7日閲覧。 
  41. ^ Davis, P; Kenrick, P. (2004), Fossil Plants, Smithsonian Books, Washington D.C. 
  42. ^ Donoghue, M.J. (2005), “Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny” (abstract), Paleobiology 31 (2): 77–93, doi:10.1666/0094-8373(2005)031[0077:KICASM]2.0.CO;2, http://paleobiol.geoscienceworld.org/cgi/content/abstract/31/2_Suppl/77 2008年4月7日閲覧。 
  43. ^ a b c Bowe, L.M.; Coat, G.; Depamphilis, C.W. (2000), “Phylogeny of seed plants based on all three genomic compartments: Extant gymnosperms are monophyletic and Gnetales' closest relatives are conifers”, Proceedings of the National Academy of Sciences 97 (8): 4092, doi:10.1073/pnas.97.8.4092 
  44. ^ a b c Chaw, S.M.; Parkinson, C.L.; Cheng, Y.; Vincent, T.M.; Palmer, J.D. (2000), “Seed plant phylogeny inferred from all three plant genomes: Monophyly of extant gymnosperms and origin of Gnetales from conifers”, Proceedings of the National Academy of Sciences 97 (8): 4086, doi:10.1073/pnas.97.8.4086 
  45. ^ a b c Soltis, D.E.; Soltis, P.S.; Zanis, M.J. (2002), “Phylogeny of seed plants based on evidence from eight genes” (abstract), American Journal of Botany 89 (10): 1670, doi:10.3732/ajb.89.10.1670, http://amjbot.org/cgi/content/abstract/89/10/1670 2008年4月8日閲覧。 
  46. ^ Friis, E.M.; Pedersen, K.R.; Crane, P.R. (2006), “Cretaceous angiosperm flowers: Innovation and evolution in plant reproduction”, Palaeogeography, Palaeoclimatology, Palaeoecology 232 (2-4): 251–293, doi:10.1016/j.palaeo.2005.07.006 
  47. ^ Hilton, J.; Bateman, R.M. (2006), “Pteridosperms are the backbone of seed-plant phylogeny”, The Journal of the Torrey Botanical Society 133 (1): 119–168, doi:10.3159/1095-5674(2006)133[119:PATBOS]2.0.CO;2 
  48. ^ a b Bateman, R.M.; Hilton, J.; Rudall, P.J. (2006), “Morphological and molecular phylogenetic context of the angiosperms: contrasting the 'top-down' and 'bottom-up' approaches used to infer the likely characteristics of the first flowers”, Journal of Experimental Botany 57 (13): 3471, doi:10.1093/jxb/erl128, PMID 17056677 
  49. ^ a b c Frohlich, M.W.; Chase, M.W. (2007), “After a dozen years of progress the origin of angiosperms is still a great mystery.”, Nature 450 (7173): 1184–9, doi:10.1038/nature06393, PMID 18097399 
  50. ^ Mora, C.I.; Driese, S.G.; Colarusso, L.A. (1996), “Middle to Late Paleozoic Atmospheric CO2 Levels from Soil Carbonate and Organic Matter”, Science 271 (5252): 1105–1107, doi:10.1126/science.271.5252.1105 
  51. ^ Berner, R.A. (1994), “GEOCARB II: A revised model of atmospheric CO2 over Phanerozoic time”, Am. J. Sci 294: 56–91, doi:10.2475/ajs.294.1.56 
  52. ^ a b Algeo, T.J.; Berner, R.A.; Maynard, J.B.; Scheckler, S.E.; Archives, G.S.A.T. (1995), “Late Devonian Oceanic Anoxic Events and Biotic Crises: "Rooted" in the Evolution of Vascular Land Plants?”, GSA Today 5 (3), オリジナルの2002年7月17日時点におけるアーカイブ。, https://web.archive.org/web/20020717072702/http://rock.geosociety.org/pubs/gsatoday/gsat9503.htm 
  53. ^ Retallack, G. J. (1986), Wright, V. P., ed., Paleosols: their Recognition and Interpretation, Oxford: Blackwell 
  54. ^ a b c d e f g h i Algeo, T.J.; Scheckler, S.E. (1998), “Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events”, Philosophical Transactions of the Royal Society B: Biological Sciences 353 (1365): 113–130, doi:10.1098/rstb.1998.0195 
  55. ^ a b Kenrick, P.; Crane, P.R. (1997), “The origin and early evolution of plants on land”, Nature 389 (6646): 33, doi:10.1038/37918 
  56. ^ Schüßler, A. et al. (2001), “A new fungal phlyum, the Glomeromycota: phylogeny and evolution.”, Mycol. Res. 105 (12): 1416, doi:10.1017/S0953756201005196, http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=95091 
  57. ^ Simon, Luc; Bousquet, Jean; Lévesque, Roger C.; Lalonde, Maurice (1993). “Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants”. Nature 363 (6424): 67–69. doi:10.1038/363067a0. ISSN 0028-0836. 
  58. ^ Remy, W.; Taylor, T. N.; Hass, H.; Kerp, H. (1994). “Four hundred-million-year-old vesicular arbuscular mycorrhizae.”. Proceedings of the National Academy of Sciences 91 (25): 11841–11843. doi:10.1073/pnas.91.25.11841. ISSN 0027-8424. 
  59. ^ Brundrett, Mark C. (2002). “Coevolution of roots and mycorrhizas of land plants”. New Phytologist 154 (2): 275–304. doi:10.1046/j.1469-8137.2002.00397.x. ISSN 0028-646X. 
  60. ^ a b c Mapes, G.; Rothwell, G.W.; Haworth, M.T. (1989), “Evolution of seed dormancy”, Nature 337 (6208): 645–646, doi:10.1038/337645a0 
  61. ^ a b Crepet, W. L. (2000), “Progress in understanding angiosperm history, success, and relationships: Darwin's abominably "perplexing phenomenon"”, Proceedings of the National Academy of Sciences 97: 12939, doi:10.1073/pnas.97.24.12939, PMID 11087846, http://www.pnas.org/cgi/reprint/97/24/12939 
  62. ^ Nam, J.; Depamphilis, CW; Ma, H; Nei, M (2003), “Antiquity and Evolution of the MADS-Box Gene Family Controlling Flower Development in Plants”, Mol. Biol. Evol. 20 (9): 1435–1447, doi:10.1093/molbev/msg152, PMID 12777513, http://mbe.oxfordjournals.org/cgi/content/full/20/9/1435 
  63. ^ Sun, G.; Ji, Q.; Dilcher, D.L.; Zheng, S.; Nixon, K.C.; Wang, X. (2002), “Archaefructaceae, a New Basal Angiosperm Family”, Science 296 (5569): 899, doi:10.1126/science.1069439, PMID 11988572 
  64. ^ In fact, Archaeofructus probably didn't bear true flowers: see
    • Friis, E.M.; Doyle, J.A.; Endress, P.K.; Leng, Q. (2003), “Archaefructus--angiosperm precursor or specialized early angiosperm?”, Trends in Plant Science 8 (8): 369–373, doi:10.1016/S1360-1385(03)00161-4, PMID 12927969 
  65. ^ a b Wing, S.L.; Boucher, L.D. (1998), “Ecological Aspects Of The Cretaceous Flowering Plant Radiation”, Annual Reviews in Earth and Planetary Sciences 26 (1): 379–421, doi:10.1146/annurev.earth.26.1.379 
  66. ^ Wilson Nichols Stewart & Gar W. Rothwell, Paleobotany and the evolution of plants, 2nd ed., Cambridge Univ. Press 1993, p. 498
  67. ^ a b Feild, T.S.; Arens, N.C.; Doyle, J.A.; Dawson, T.E.; Donoghue, M.J. (2004), “Dark and disturbed: a new image of early angiosperm ecology” (abstract), Paleobiology 30 (1): 82–107, doi:10.1666/0094-8373(2004)030<0082:DADANI>2.0.CO;2, http://paleobiol.geoscienceworld.org/cgi/content/abstract/30/1/82 2008年4月8日閲覧。 
  68. ^ Osborne, C.P.; Beerling, D.J. (2006), “Review. Nature's green revolution: the remarkable evolutionary rise of C4 plants”, Philosophical Transactions: Biological Sciences 361 (1465): 173–194, doi:10.1098/rstb.2005.1737, PMC 1626541, PMID 16553316, http://www.journals.royalsoc.ac.uk/index/YTH8204514044972.pdf 2008年2月11日閲覧。 
  69. ^ a b . JSTOR 3515337. 
  70. ^ Thomasson, J.R.; Nelson, M.E.; Zakrzewski, R.J. (1986), “A Fossil Grass (Gramineae: Chloridoideae) from the Miocene with Kranz Anatomy”, Science 233 (4766): 876–878, doi:10.1126/science.233.4766.876, PMID 17752216 
  71. ^ Functions of phytoliths in vascular plants: an evolutionary perspective (Caroline AE Strömberg:2016)
  72. ^ a b c d McElwain, J.C.; Punyasena, S.W. (2007), “Mass extinction events and the plant fossil record”, Trends in Ecology & Evolution 22 (10): 548–557, doi:10.1016/j.tree.2007.09.003, PMID 17919771 






固有名詞の分類


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「植物の進化」の関連用語

植物の進化のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



植物の進化のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの植物の進化 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2024 GRAS Group, Inc.RSS