ターボファン‐エンジン【turbofan engine】
ターボファンエンジン
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/04/27 01:46 UTC 版)
![]() | この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2015年7月) |

A. 低圧軸
B. 高圧軸
C. 静止部
1. ナセル
2. ファン
3. 低圧圧縮機
4. 高圧圧縮機
5. 燃焼器
6. 高圧タービン
7. 低圧タービン
8. コアノズル
9. ファンノズル
ターボファンエンジン(Turbofan engine)は、ジェットエンジンの一種[1]。コアとなるターボジェットエンジンにファンを追加したものである[1][2][3]。ファンを用いることにより、ターボジェットと異なり、コアエンジン部を迂回するエアフローが設定され[1][3]、エンジン排気のエアフローを増大させ、ジェットエンジン推力の増大および効率化が図られる[1][2]。
1960年代より実用化が行われ、現代のジェットエンジンの主流となっているものである[2]。
概要
ターボジェットエンジンは、燃焼室で燃焼した高熱排気をノズルより噴出させており、この高熱排気で高速の噴流がエンジンの推進力となる[1][2]。しかしジェットエンジンにおける推進効率は、空気抵抗との関係により、排気の速度が飛行速度より若干速い程度の速度である場合に最も良いものとなる。このため、亜音速で飛行するジェット機の場合は、機体速度よりもジェット噴流がかなり高速になり、推進効率が悪くなる。
この問題を解決するために考えられたのが、タービンから得られる軸出力をコンプレッサーの駆動に用いるのみならず、プロペラの駆動にも用いるターボプロップエンジンである。ただしプロペラの速度が音速に達するあたりから衝撃波が発生し、効率が低下する(機体の速度が700km/hに達した前後から、プロペラの速度は音速に達し、効率が悪くなる)。よって高亜音速機にとっては効率的ではない。また全ての噴流がタービンに吸収される訳ではなく、一部はそのまま後方に噴射される。多少の推力向上にはなるものの、相変わらず高速の噴流は効率が悪い事に変わりは無い。
そのため、開発されたのがターボファンエンジンである。基本的な構造は、コアエンジンとなるターボジェットのコンプレッサーの前部にファンを追加したものである[注 1]。ファンはコンプレッサーと同じく、タービンと同軸であり、タービン出力によって駆動される[注 2]。つまりターボプロップエンジンのプロペラの直径を小さくして、ジェットエンジンに内蔵したようなものがターボファンだと捉えればわかりやすい[注 3]。
ターボプロップエンジンにおいては、プロペラの回転によって得られた空気噴流は、純粋に推進力となる。しかしターボファンエンジンの場合は、空気噴流の一部(コンプレッサーの直径相当部分)はコンプレッサーを通るが、一部(コンプレッサーの直径より大きくなっている部分)はコンプレッサーを通らない。コンプレッサーを通った空気噴流は、コアエンジンとなるターボジェットを通して高温高速噴流となる一方、コンプレッサーを通らなかった空気噴流は低温低速噴流となる。そして、最終的にそれらが混ぜ合わさる事となり、噴流の速度が平均化される。これにより、その飛行機にとって最適な速度の噴流(ターボジェットの場合よりも低速、ターボプロップの場合よりも高速)が得られる。またターボジェットの場合よりも噴流の量も増加し、出力が向上する。
ジェットエンジンの推力は、排気ジェット速度とその空気流量の積に比例する。一方でジェットエンジンの燃料流量は、排気ジェット速度の2乗とその空気流量の積に比例して増す。
ここで、推力が同じターボジェットエンジンとターボファンエンジンがあるとした場合、極端な想定ではあるが、ターボファンの排気噴流速度がターボジェットのそれの1/2だとすると、ターボファンの燃料流量はターボジェットに比べて1/4になる[4]。
また、噴流速度の低下は副次的な作用として騒音の低下にもつながっている。
最初のターボファンエンジンはロールス・ロイス コンウェイであり、1950年代に実用化された。1960年代にはロールス・ロイス スペイがF-4戦闘機のイギリス仕様に採用され、超音速戦闘機においても盛んに用いられるようになり、1970年代以降の主流となった。超音速戦闘機といえど実際には超音速領域で使用する事があまりなく、亜音速領域での運用がほとんどであることが判明したからである。また、ターボファンエンジンは(当然、コンプレッサーをバイパスした空気噴流は燃焼されないため)排気に含まれる酸素量が大きく、アフターバーナーによる出力増大効果が大きい。戦闘機はその運用上、頻繁な出力調整が必要であり、アフターバーナーはそのために(燃費効率が著しく悪いことを承知の上で)用いられる。出力増大効果が大きいということは、出力調整可能範囲が大きいことをも意味する。
種類
コアエンジンの前部にファンを追加したフロントファン形式と、後部に追加するアフトファン形式などが存在したが、現在ではフロントファン形式が主流となっている。
フロントファンのターボファンエンジンで、コアエンジンに使用する空気流入量とファンのみを通過する空気流入量の比率は、バイパス比と呼ばれる。バイパス比の比率により、低バイパス比エンジンと高バイパス比エンジンとに分類される。一般に高バイパス比のものほど、低速向きの特性になる。初期のターボファンエンジンは低バイパス比エンジンであり、後に高バイパス比エンジンが開発された。
低バイパス比エンジン

低バイパス比エンジンは、バイパス比が概ね1から2未満のものを指す。ファンからの空気排気量が少なく、ターボジェットエンジンに近い特性となる。P&W TF30エンジンがF-111に用いられて以降、超音速飛行が必要な軍用機(とりわけ戦闘機やマルチロール機)のエンジンにも、純粋なターボジェットに代えてターボファンを用いるようになった。ただし従来のターボジェットに比べれば低速向けの特性であるため、音速突破には燃料を短時間で大量に消費するアフターバーナーの使用に頼らなければならなくなっていた。F-22に採用されたP&W F119エンジンはターボファンエンジンの優位性と要求能力の兼ね合いから特にバイパス比が低く設計され、よりターボジェットに近い特性を持つものとなった。これによってターボファンエンジンでありながら、アフターバーナーなしでの音速突破が可能となっている。
亜音速機では後述する高バイパス比エンジンが用いられるが、初期のターボファンエンジンは技術的限界により、亜音速機用であっても低バイパス比エンジンを採用していた。P&W JT8Dはバイパス比が1程度でボーイング727やボーイング737などに用いられた。
ファンからの空気排気はコアエンジンの外側を通り、ノズルにおいてコアエンジンからの排気と混合され排出されるものが多い。これにより排気の速度が平均化され、より適切な排気の速度が得られる。
高バイパス比エンジン

高バイパス比エンジンは、バイパス比が概ね4以上のものを指す。1960年代後半から実用化が行われた。ファンからの空気噴出量がコアエンジンからの排気と比較し、圧倒的に大きく、比較的低速の飛行に適したエンジンである。現代のジェット旅客機エンジンの主流となっている。バイパス比の向上は、亜音速飛行における燃費の向上につながる。冶金及び冷却技術の向上がタービン温度の高温化を可能にし、コアエンジンの出力増大を導いた。これがファン出力の増大に結び付いている。
初期の高バイパス比エンジンであるP&W JT9D(ボーイング747などに使用)はバイパス比5程度であるが、最新のエンジン・アライアンス GP7000ではバイパス比8.7となっている。この値はターボプロップエンジンのプロペラ推力とジェット推力の比に近く、1段のファンにてほとんどの推力を得るため、「プロペラへの回帰」と解説するむきもある。またファンとコアエンジンが主軸を共有するターボファンエンジンでありながら、遊星ギヤによってファン(プロペラ)の減速機構を有する高バイパス比エンジン(ギヤードターボファンエンジン)もあり、ターボプロップエンジンやプロップファンエンジンとの境が曖昧になりつつある。
高バイパス比エンジンでは、ノズルでファンからの排気とコアエンジンの排気を混合せず、ファンの直後でエンジン外に排気されるものが多い。これは長いダクトを通る事による効率低下のデメリットを回避するためである。ファンからの空気排気の量がコアエンジンの排気の量よりも圧倒的に多いため、ファンの直後で排気された噴流がコアエンジンの排気を包み込む格好になるため、両者の混合は問題無く行われ、コアエンジンからの排気ガスの流速は最適化される。ファンの排気がコアエンジンの排気を包み込むために騒音が小さくなるので、都市部での飛行経路の自由度が増すメリットが有る。キャビンの騒音も軽減される。
アフトファン式エンジン

低バイパス比ターボファンエンジンの一種で、ファンは一般的なエンジン最前部ではなく、エンジンの最後部(燃焼室とタービンの後部)に配置される。
ファン駆動用のタービンは、圧縮機駆動用のタービンとは独立して配置されており、ファンとほぼ一体化している。
特徴としては既存のターボジェットエンジンをほぼ無改造で流用することによるコストダウンや整備部品の共通化があげられるが、フロントファン方式に比べるとファンブレードに高い耐熱性が要求される(ファンとファン駆動用タービンが物理的に直結していることによる熱伝導や、エンジンから噴射される排気が直接ファンタービンに接触する可能性があるため)。
このため実際に量産されたのは、コンベア990に使用されたゼネラル・エレクトリック製のCJ805-23[注 4]や、CF700[注 5]程度である。
開発史
フランク・ホイットルは1936年、効率化のためにエンジン内気流をバイパスさせるアイデアについて、特許を出願していた[4]。
脚注
注釈
- ^ 戦闘機用の低バイパス比ターボファンエンジンの中には、スネクマ M53やゼネラル・エレクトリック F404などのように、低圧圧縮機がファンの役割を兼ねている(低圧圧縮機が圧縮した空気の一部が、高圧圧縮機と燃焼室・タービンをバイパスする)例もある。
- ^ 現代のターボファンエンジンの主流は、2軸式であり、高圧タービン部の出力で高圧コンプレッサーを、低圧タービン部の出力でファンと低圧コンプレッサーを駆動するものとなっている。また、ファン回転数を減速させるギヤードターボファンエンジンの開発も行われている。
- ^ 総じてプロペラは、直径が大きいほど効率が良い。ターボファンのファンを「半径が小さいプロペラ」とみなせば、ターボプロップのほうが低速域では効率がよい。プロペラの外周の速度が音速に達するあたりから、ターボファンのほうが効率が上回る事になる。
- ^ 同社のJ79ターボジェットエンジンの民間機用モデルであるCJ805にファンを追加したもの。
- ^ 同社製のCJ610(J85の民間機仕様)ターボジェットにファンを追加したもの。
出典
参考文献
- 石澤, 和彦『ジェットエンジン史の徹底研究―基本構造と技術変遷』グランプリ出版、2013年6月11日。ISBN 978-4876873289 。
外部リンク
- 航空実用事典 エンジンと動力装置 engine & powerplant(日本航空)
- 斉藤喜夫, 遠藤征紀, 松田幸雄, 杉山七契, 菅原昇, 山本一臣「コア分離型ターボファン・エンジン」『航空宇宙技術研究所報告』TR-1289、宇宙航空研究開発機構、1996年4月、1-7頁、ISSN 03894010、NAID 110006259742。
ターボファンエンジン
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/08/12 15:07 UTC 版)
「ジェットエンジン」の記事における「ターボファンエンジン」の解説
詳細は「ターボファンエンジン」を参照 ターボジェットの吸気口近傍・圧縮機前方にファンを備えるエンジンで、ファンの外周部を通過する一部の流入空気は圧縮機以降に導かれずにコアエンジン外周部へバイパスされる。このファンはプロペラと類似の役割を担い、大部分の空気を飛行速度と同等の速さで排出することで効率の高い軸推力を得ている。ファン後流の一部はステータやファンダクトによってジェット推進力を得る。ファンを駆動する軸は一番内側に存在するコアエンジンとは別の同軸エンジンとみなすことが出来る。一般的には2軸式ガスタービンエンジンの後方の低圧タービンによってファンと低圧コンプレッサを駆動する。イギリスのロールスロイス社製の高バイパスターボファンエンジンは更に3軸目がファン駆動専用のフリータービンとなっている。基本原理はファン駆動用の別エンジンがコアエンジンと燃焼室と流体を共有しながら串刺しになっていて、コアエンジンの安定した持続運転とファン駆動力の出力調整を両立している。ファンにはプロペラのようなピッチを変更する機構はなく、減速機を介さずに2軸又は3軸目のタービン回転がそのまま伝達されるためプロペラに比べて回転速度は大きい。ターボジェットに比べて総排気流速度が低く抑えられるため、亜音速の輸送機に利用されている。ただし、後述するバイパス空気量の小さいターボファンはターボジェットの性格に近くなり、超音速ジェット戦闘機のエンジンとして主流となっている。 ターボファンの特徴をまとめるとターボジェットに比べて以下のようなメリットがある。 総合的な排気流速度は遅くなるものの、全体として流量が増えるため、結果的に推力が増大する。 燃焼に使わない空気を低速で排出して推力に利用するため、推進効率が良くなり燃費が向上する。 バイパス空気流が燃焼ガスを覆うため、騒音が抑えられる。 排気に含まれる酸素の割合が大きくなるので、アフターバーナー使用時の出力増大効果が高い(ただし、これは、アフターバーナー使用時の燃費の悪化がより著しい事をも意味する)。 前方にあるファンのみを通過して、エンジン本体の圧縮機に吸い込まれない空気量Waf をエンジン本体の圧縮機に吸い込まれる空気量Wap で割った値Waf/Wap をバイパス比 (By-Pass Ratio, BPR) と呼ぶ。例えばバイパス比5のエンジンならば、ファンだけを通過する空気量は圧縮機から燃焼室へと流れる空気量の5倍にあたる。この値は地上静止状態で定義される事が多く、実際には飛行マッハ数によって変化する。通常、バイパス比が高いほど燃費が良く、亜音速飛行に適した性能特性を持つ。 一般的に、バイパス比が1前後のものを低バイパス比、4以上のものを高バイパス比と呼ぶ場合が多い。初期にはバイパス比が小さいものしか製造できなかったが、今日ではバイパス比9に迫るエンジンが稼動しており、ボーイング787のような新型旅客機向けにバイパス比10を越えるものの開発も行われている。一方、戦闘機用のものはバイパス比が小さく、その値が1を切るものもある。 プロップファン ファンをプロペラ状にして極限まで効率の向上を追求したターボファンの一種にプロップファン(アドバンスド・ターボプロップ (Advanced Turbo Prop, ATP) とも)がある。これは圧縮機の外周部(ナセル外側)に薄くて強い後退角を有する、径が小さめのプロペラ(可変ピッチ機構付き)を備えるもので、プロペラ端で発生する衝撃波を抑えつつ高速(マッハ0.8程度)と高効率を両立させようとしたものである。1980年代の原油価格の高騰に触発されて各所で研究開発が行われたが、プロペラの振動など解決すべき技術的課題のためにそのメリットがかすみ、通常のターボファンの性能向上(高バイパス比の実現)とともに開発は放棄されていった。数少ない実用例の一つにウクライナの輸送機An-70がある。 コア分離型超高バイパス比ターボファン ターボファンの派生型として、現在JAXAで構想されているコア分離型超高バイパス比ターボファンエンジンといわれるものがある。これはファンとガスタービン部分(コアエンジン)を分離し、ガスタービン側で圧縮した空気をファンにバイパスして駆動しようというアイデアである。これにより10を越える高バイパス比が実現し、ファンのコントロールやレイアウトの自由度を増すことで複数のリフトファンおよび推進ファンの設置とそれらのスイッチングを行い、今までにない大型VTOL機を製作することも可能だとされている。 採用例 現在のジェット旅客機の多くが高バイパス比ターボファンを採用しているが、低バイパス比ターボファンを搭載した旅客機も近年まで製造され続けた。超音速飛行を行う戦闘機の場合、バイパス比の低い、より高速に適したものが採用されている。特に著しいのはF-22が装備するF119であり、バイパス比は約0.2と非常に小さい。これはアフターバーナーなしでの超音速巡航を可能にするためである。 ボーイング777に搭載されているGE90の巨大なファン ボーイング747やエアバスA300といった日本でも馴染み深い旅客機に搭載されているプラット・アンド・ホイットニー JT9D F-22に搭載されているF119の先行量産型(YF119)
※この「ターボファンエンジン」の解説は、「ジェットエンジン」の解説の一部です。
「ターボファンエンジン」を含む「ジェットエンジン」の記事については、「ジェットエンジン」の概要を参照ください。
固有名詞の分類
- ターボファン・エンジンのページへのリンク