バクテリオファージとは?

Weblio 辞書 > 辞書・百科事典 > デジタル大辞泉 > バクテリオファージの意味・解説 

バクテリオファージ【bacteriophage】


バクテリオファージ

〔名〕 (フランス bactériophage) 細菌バクテリア)に寄生して溶菌(食現象起こすウイルス細菌培養中に細菌発育阻止域が認められ、これがこのウイルスによることがほぼ判明しているが、治療応用されるまでには至っていない。ファージ細菌ウイルス。〔現代の科学(1957)〕


バクテリオファージ

英訳・(英)同義/類義語:bacteriophage, baeteriophage

細菌感染するウイルスの総称細菌ウイルス
「生物学用語辞典」の他の用語
生物の名前総称など:  ニホンザル  ネマトーダ  ハチュウ類  バクテリオファージ  バクテリオファージλ  ヒトデ  ヒト免疫不全ウイルス

バクテリオファージ [Bacteriophage(s)]

 細菌ウイルスまたは単にファージともいわれ、細菌宿主にするウイルスで、細菌を食うものという意味である。1915年にF.W.トボルト(イギリス)と1917年F.ドヘレレ(カナダ)によって独立発見された。細菌への寄生特異性があり、大腸菌枯草菌ファージがよく研究された。
  ファージには細菌感染してその細胞内で増殖し、宿主細菌細胞破壊して多数の子ファージ放出す溶菌型と、細菌感染しても細菌染色体共存したまま細菌生存し、DNA複製するプロファージ(prophage)といわれる状態にある溶原化型がある。前者をヴィルレント・ファージ(virulent phage)、後者テンプレート・ファージ(template phage)という。大腸菌ファージには2本鎖DNAをもつT-偶数ファージ1本鎖DNAをもつφ×174などがあり、1本鎖RNAをもつf2ファージなどがある。近年ファージその他の研究基礎になって分子生物学へと発展し、現在、遺伝子組替えなどのバイオテクノロジー(生物工学)に重要な役割をもっている。

ファージ

(バクテリオファージ から転送)

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/06/19 17:03 UTC 版)

ファージ: phage)は、細菌古細菌に感染して複製するウイルスで、正式にはバクテリオファージ: bacteriophage)と呼ばれる。ファージの基本構造は、タンパク質の外殻と遺伝情報を担う核酸 (主に二本鎖DNA) からなる。ファージが感染した細菌は細胞膜を破壊される溶菌という現象を起こし、死細胞を残さない。細菌が食べ尽くされるかのように死滅するため、これにちなんで「細菌(bacteria)を食べるもの(ギリシア語:phagos)」を表す「バクテリオファージ(bacteriophage)」という名がつけられた。


  1. ^ a b McGrath S and van Sinderen D (editors). (2007). Bacteriophage: Genetics and Molecular Biology (1st ed.). Caister Academic Press. ISBN 978-1-904455-14-1. http://www.horizonpress.com/phage 
  2. ^ “Novel Phage Therapy Saves Patient with Multidrug-Resistant Bacterial Infection”. UC Health – UC San Diego. https://health.ucsd.edu/news/releases/Pages/2017-04-25-novel-phage-therapy-saves-patient-with-multidrug-resistant-bacterial-infection.aspx 2018年5月13日閲覧。 
  3. ^ Suttle, Curtis A. (September 2005). “Viruses in the sea” (英語). Nature 437 (7057): 356–361. doi:10.1038/nature04160. ISSN 0028-0836. http://www.nature.com/articles/nature04160. 
  4. ^ a b Wommack, K. E.; Colwell, R. R. (2000). “Virioplankton: Viruses in Aquatic Ecosystems”. Microbiology and Molecular Biology Reviews 64 (1): 69–114. doi:10.1128/MMBR.64.1.69-114.2000. PMC: 98987. PMID 10704475. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC98987/. 
  5. ^ a b c Prescott, L. (1993). Microbiology, Wm. C. Brown Publishers, 0-697-01372-3
  6. ^ a b BBC Horizon (1997): The Virus that Cures – Documentary about the history of phage medicine in Russia and the West
  7. ^ Borrell, Brendan (August 2012). “Science talk: Phage factor”. Scientific American: 80–83. 
  8. ^ Keen, E. C. (2012). “Phage Therapy: Concept to Cure”. Frontiers in Microbiology 3: 238. doi:10.3389/fmicb.2012.00238. PMC: 3400130. PMID 22833738. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400130/. 
  9. ^ Sweere, Johanna M.; Van Belleghem, Jonas D.; Ishak, Heather; Bach, Michelle S.; Popescu, Medeea; Sunkari, Vivekananda; Kaber, Gernot; Manasherob, Robert et al. (2019). “Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection” (英語). Science 363 (6434): eaat9691. doi:10.1126/science.aat9691. ISSN 0036-8075. https://www.sciencemag.org/lookup/doi/10.1126/science.aat9691. 
  10. ^ Elina Laanto, Sari Mäntynen, Luigi De Colibus, Jenni Marjakangas, Ashley Gillum, David I. Stuart, Janne J. Ravantti, Juha Huiskonen, Lotta-Riina Sundberg: Virus found in a boreal lake links ssDNA and dsDNA viruses. In: Proceedings of the National Academy of Sciences 114(31), July 2017, doi:10.1073/pnas.1703834114
  11. ^ “Extensive conservation of prokaryotic ribosomal binding sites in known and novel picobirnaviruses”. Virology 516: 108–114. (2018). doi:10.1016/j.virol.2018.01.006. PMID 29346073. 
  12. ^ Kathryn M. Kauffman, Fatima A. Hussain, Joy Yang, Philip Arevalo, Julia M. Brown, William K. Chang, David VanInsberghe, Joseph Elsherbini, Radhey S. Sharma, Michael B. Cutler, Libusha Kelly, Martin F. Polz: A major lineage of non-tailed dsDNA viruses as unrecognized killers of marine bacteria. In: Nature Vol. 554, pp. 118–122. January 24th, 2018. doi:10.1038/nature25474
  13. ^ Hankin, E H. (1896). “L'action bactericide des eaux de la Jumna et du Gange sur le vibrion du cholera” (フランス語). Annales de l'Institut Pasteur 10: 511–23. https://archive.org/stream/annalesdelinstit10inst#page/511/mode/1up. 
  14. ^ Twort, F. W. (1915). “An Investigation on the Nature of Ultra-Microscopic Viruses”. The Lancet 186 (4814): 1241–43. doi:10.1016/S0140-6736(01)20383-3. https://zenodo.org/record/2380119. 
  15. ^ d'Hérelles, Félix (1917). “Sur un microbe invisible antagoniste des bacilles dysentériques”. Comptes Rendus de l'Académie des Sciences de Paris 165: 373–5. オリジナルの11 May 2011時点におけるアーカイブ。. https://web.archive.org/web/20110511183504/http://202.114.65.51/fzjx/wsw/wswfzjs/pdf/1917p157.pdf 2010年9月5日閲覧。. 
  16. ^ d'Hérelles, Félix (1949). “The bacteriophage”. Science News 14: 44–59. http://mmbr.asm.org/cgi/reprint/40/4/793.pdf 2010年9月5日閲覧。. 
  17. ^ Keen, EC (2012). “Felix d'Herelle and Our Microbial Future”. Future Microbiology 7 (12): 1337–39. doi:10.2217/fmb.12.115. PMID 23231482. 
  18. ^ The Nobel Prize in Physiology or Medicine 1969”. Nobel Foundation. 2007年7月28日閲覧。
  19. ^ Kutter, Elizabeth; De Vos, Daniel; Gvasalia, Guram; Alavidze, Zemphira; Gogokhia, Lasha; Kuhl, Sarah; Abedon, Stephen (1 January 2010). “Phage Therapy in Clinical Practice: Treatment of Human Infections”. Current Pharmaceutical Biotechnology 11 (1): 69–86. doi:10.2174/138920110790725401. PMID 20214609. 
  20. ^ Сергей Головин Бактериофаги: убийцы в роли спасителей // Наука и жизнь. – 2017. – № 6. – С. 26–33
  21. ^ a b Rhoads, DD; Wolcott, RD; Kuskowski, MA; Wolcott, BM; Ward, LS; Sulakvelidze, A (June 2009). “Bacteriophage therapy of venous leg ulcers in humans: results of a phase I safety trial”. Journal of Wound Care 18 (6): 237–8, 240–3. doi:10.12968/jowc.2009.18.6.42801. PMID 19661847. 
  22. ^ a b c Wright, A.; Hawkins, C.H.; Änggård, E.E.; Harper, D.R. (August 2009). “A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy”. Clinical Otolaryngology 34 (4): 349–357. doi:10.1111/j.1749-4486.2009.01973.x. PMID 19673983. 
  23. ^ Tawil, Nancy (April 2012). “Surface plasmon resonance detection of E. coli and mathicillin-resistant S. aureus bacteriophages”. PLOS Genetics 3 (5): e78. doi:10.1371/journal.pgen.0030078. PMC: 1877875. PMID 17530925. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1877875/. 
  24. ^ Cha, Kyoungeun; Oh, Hynu K.; Jang, Jae Y.; Jo, Yunyeol; Kim, Won K.; Ha, Geon U.; Ko, Kwan S.; Myung, Heejoon (10 April 2018). “Characterization of Two Novel Bacteriophages Infecting Multidrug-Resistant (MDR) Acinetobacter baumannii and Evaluation of Their Therapeutic Efficacy in Vivo”. Frontiers in Microbiology 9: 696. doi:10.3389/fmicb.2018.00696. ISSN 1664-302X. PMC: 5932359. PMID 29755420. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5932359/. 
  25. ^ Schooley, Robert T.; Biswas, Biswajit; Gill, Jason J.; Hernandez-Morales, Adriana; Lancaster, Jacob; Lessor, Lauren; Barr, Jeremy J.; Reed, Sharon L. et al. (October 2017). “Development and Use of Personalized Bacteriophage-Based Therapeutic Cocktails To Treat a Patient with a Disseminated Resistant Acinetobacter baumannii Infection”. Antimicrobial Agents and Chemotherapy 61 (10). doi:10.1128/AAC.00954-17. ISSN 0066-4804. PMC: 5610518. PMID 28807909. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5610518/. 
  26. ^ Kuchment, Anna (2012), The Forgotten Cure: The past and future of phage therapy, Springer, p. 11, ISBN 978-1-4614-0250-3 
  27. ^ Deresinski, Stan (15 April 2009). “Bacteriophage Therapy: Exploiting Smaller Fleas”. Clinical Infectious Diseases 48 (8): 1096–1101. doi:10.1086/597405. PMID 19275495. https://academic.oup.com/cid/article-pdf/48/8/1096/961630/48-8-1096.pdf. 
  28. ^ U.S. FDA/CFSAN: Agency Response Letter, GRAS Notice No. 000198
  29. ^ (U.S. FDA/CFSAN: Agency Response Letter, GRAS Notice No. 000218)
  30. ^ FSIS Directive 7120 Archived 18 October 2011 at the Wayback Machine.
  31. ^ Atamer, Zeynep; Samtlebe, Meike; Neve, Horst; J. Heller, Knut; Hinrichs, Joerg (16 July 2013). “Review: elimination of bacteriophages in whey and whey products”. Frontiers in Microbiology 4: 191. doi:10.3389/fmicb.2013.00191. PMC: 3712493. PMID 23882262. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712493/. 
  32. ^ FDA 510(k) Premarket Notification
  33. ^ FDA clears first test to quickly diagnose and distinguish MRSA and MSSA. FDA (6 May 2011)
  34. ^ Vaisman, Daria (25 May 2007) Studying anthrax in a Soviet-era lab – with Western funding. The New York Times
  35. ^ Dobozi-King, M.; Seo, S.; Kim, J.U.; Young, R.; Cheng, M.; Kish, L.B. (2005). “Rapid detection and identification of bacteria: SEnsing of Phage-Triggered Ion Cascade (SEPTIC)”. Journal of Biological Physics and Chemistry 5: 3–7. doi:10.4024/1050501.jbpc.05.01. http://www.ece.tamu.edu/%7Enoise/research_files/King_et_al_JBPC.pdf. 
  36. ^ “Phage Display”. Chem. Rev. 97 (2): 391–410. (April 1997). doi:10.1021/cr960065d. PMID 11848876. 
  37. ^ Liu, Jing; Dehbi, Mohammed; Moeck, Greg; Arhin, Francis; Bauda, Pascale; Bergeron, Dominique; Callejo, Mario; Ferretti, Vincent et al. (February 2004). “Antimicrobial drug discovery through bacteriophage genomics”. Nature Biotechnology 22 (2): 185–191. doi:10.1038/nbt932. PMID 14716317. 
  38. ^ Technological background Phage-ligand technology
  39. ^ Keen, E. C. (2014). “Tradeoffs in bacteriophage life histories”. Bacteriophage 4 (1): e28365. doi:10.4161/bact.28365. PMC: 3942329. PMID 24616839. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3942329/. 
  40. ^ Mason, Kenneth A., Jonathan B. Losos, Susan R. Singer, Peter H Raven, and George B. Johnson. (2011). Biology, p. 533. McGraw-Hill, New York. 978-0-07-893649-4.
  41. ^ Mokrousov I (2009). “Corynebacterium diphtheriae: genome diversity, population structure and genotyping perspectives”. Infection, Genetics and Evolution 9 (1): 1–15. doi:10.1016/j.meegid.2008.09.011. PMID 19007916. 
  42. ^ “Cholera in the 21st century”. Current Opinion in Infectious Diseases 24 (5): 472–7. (October 2011). doi:10.1097/QCO.0b013e32834a88af. PMID 21799407. 
  43. ^ Keen, E. C. (December 2012). “Paradigms of pathogenesis: Targeting the mobile genetic elements of disease”. Frontiers in Cellular and Infection Microbiology 2: 161. doi:10.3389/fcimb.2012.00161. PMC: 3522046. PMID 23248780. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3522046/. 
  44. ^ Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; MacIejewska, Barbara (2015). “Bacteriophages and Phage-Derived Proteins – Application Approaches”. Current Medicinal Chemistry 22 (14): 1757–1773. doi:10.2174/0929867322666150209152851. PMC: 4468916. PMID 25666799. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4468916/. 
  45. ^ Gabashvili, I.; Khan, S.; Hayes, S.; Serwer, P. (1997). “Polymorphism of bacteriophage T7”. Journal of Molecular Biology 273 (3): 658–67. doi:10.1006/jmbi.1997.1353. PMID 9356254. 
  46. ^ Maghsoodi, A.; Chatterjee, A.; Andricioaei, I.; Perkins, N.C. (2019-11-25). “How the phage T4 injection machinery works including energetics, forces, and dynamic pathway”. Proceedings of the National Academy of Sciences 116 (50): 25097–25105. doi:10.1073/pnas.1909298116. ISSN 0027-8424. PMC: 6911207. PMID 31767752. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6911207/. 
  47. ^ Fiers, W.; Contreras, R.; Duerinck, F.; Haegeman, G.; Iserentant, D.; Merregaert, J.; Min Jou, W.; Molemans, F. et al. (1976). “Complete nucleotide sequence of bacteriophage MS2 RNA: primary and secondary structure of the replicase gene”. Nature 260 (5551): 500–507. Bibcode1976Natur.260..500F. doi:10.1038/260500a0. PMID 1264203. 
  48. ^ Mizuno, CM; Guyomar, C; Roux, S; Lavigne, R; Rodriguez-Valera, F; Sullivan, MB; Gillet, R; Forterre, P et al. (2019). “Numerous cultivated and uncultivated viruses encode ribosomal proteins.”. Nature Communications 10 (1): 752. Bibcode2019NatCo..10..752M. doi:10.1038/s41467-019-08672-6. PMC: 6375957. PMID 30765709. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6375957/. 
  49. ^ Snustad DP. Dominance interactions in Escherichia coli cells mixedly infected with bacteriophage T4D wild-type and amber mutants and their possible implications as to type of gene-product function: catalytic vs. stoichiometric. Virology. 1968 Aug;35(4):550-63. doi: 10.1016/0042-6822(68)90285-7. PMID 4878023.
  50. ^ Floor E. Interaction of morphogenetic genes of bacteriophage T4. J Mol Biol. 1970;47(3):293-306. doi:10.1016/0022-2836(70)90303-7
  51. ^ Callaway, Ewen (2017). “Do you speak virus? Phages caught sending chemical messages”. Nature. doi:10.1038/nature.2017.21313. https://www.nature.com/news/do-you-speak-virus-phages-caught-sending-chemical-messages-1.21313. 
  52. ^ Erez, Zohar; Steinberger-Levy, Ida; Shamir, Maya; Doron, Shany; Stokar-Avihail, Avigail; Peleg, Yoav; Melamed, Sarah; Leavitt, Azita et al. (26 January 2017). “Communication between viruses guides lysis–lysogeny decisions”. Nature 541 (7638): 488–493. Bibcode2017Natur.541..488E. doi:10.1038/nature21049. ISSN 0028-0836. PMC: 5378303. PMID 28099413. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378303/. 
  53. ^ Black, LW; Thomas, JA (2012). Condensed genome structure. Advances in Experimental Medicine and Biology. 726. pp. 469–87. doi:10.1007/978-1-4614-0980-9_21. ISBN 978-1-4614-0979-3. PMC: 3559133. PMID 22297527 
  54. ^ Al-Shayeb, Basem; Sachdeva, Rohan; Chen, Lin-Xing; Ward, Fred; Munk, Patrick; Devoto, Audra; Castelle, Cindy J.; Olm, Matthew R. et al. (February 2020). “Clades of huge phages from across Earth's ecosystems” (英語). Nature 578 (7795): 425–431. doi:10.1038/s41586-020-2007-4. ISSN 1476-4687. PMC: 7162821. PMID 32051592. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7162821/. 
  55. ^ “Genomic characterization of mycobacteriophage Giles: evidence for phage acquisition of host DNA by illegitimate recombination”. Journal of Bacteriology 190 (6): 2172–82. (March 2008). doi:10.1128/JB.01657-07. PMC: 2258872. PMID 18178732. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258872/. 
  56. ^ “Genomics of bacterial and archaeal viruses: dynamics within the prokaryotic virosphere”. Microbiology and Molecular Biology Reviews 75 (4): 610–35. (December 2011). doi:10.1128/MMBR.00011-11. PMC: 3232739. PMID 22126996. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3232739/. 
  57. ^ “Global Transcriptomic Analysis of Interactions between Pseudomonas aeruginosa and Bacteriophage PaP3”. Sci Rep 6: 19237. (2016). Bibcode2016NatSR...619237Z. doi:10.1038/srep19237. PMC: 4707531. PMID 26750429. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4707531/. 
  58. ^ “The protein interaction network of bacteriophage lambda with its host, Escherichia coli”. J. Virol. 87 (23): 12745–55. (2013). doi:10.1128/JVI.02495-13. PMC: 3838138. PMID 24049175. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838138/. 
  59. ^ “Genomic analysis of uncultured marine viral communities”. Proc. Natl. Acad. Sci. U.S.A. 99 (22): 14250–5. (October 2002). Bibcode2002PNAS...9914250B. doi:10.1073/pnas.202488399. PMC: 137870. PMID 12384570. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC137870/. 
  60. ^ Martin, C. (1988). “The Application of Bacteriophage Tracer Techniques in South West Water”. Water and Environment Journal 2 (6): 638–642. doi:10.1111/j.1747-6593.1988.tb01352.x. 
  61. ^ Bergh, O (1989). “High abundance of viruses found in aquatic environments”. Nature 340 (6233): 467–468. Bibcode1989Natur.340..467B. doi:10.1038/340467a0. PMID 2755508. 
  62. ^ Keen, Eric C.; Bliskovsky, Valery V.; Malagon, Francisco; Baker, James D.; Prince, Jeffrey S.; Klaus, James S.; Adhya, Sankar L.; Groisman, Eduardo A. (2017). “Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation”. mBio 8 (1): e02115–16. doi:10.1128/mBio.02115-16. PMC: 5241400. PMID 28096488. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5241400/. 
  63. ^ Lekunberri, Itziar; Subirats, Jessica; Borrego, Carles M.; Balcazar, Jose L. (2017). “Exploring the contribution of bacteriophages to antibiotic resistance”. Environmental Pollution 220 (Pt B): 981–984. doi:10.1016/j.envpol.2016.11.059. PMID 27890586. 
  64. ^ Strauss, James H.; Sinsheimer, Robert L. (July 1963). “Purification and properties of bacteriophage MS2 and of its ribonucleic acid”. Journal of Molecular Biology 7 (1): 43–54. doi:10.1016/S0022-2836(63)80017-0. PMID 13978804. 
  65. ^ Miller, ES; Kutter, E; Mosig, G; Arisaka, F; Kunisawa, T; Rüger, W (March 2003). “Bacteriophage T4 genome”. Microbiology and Molecular Biology Reviews 67 (1): 86–156, table of contents. doi:10.1128/MMBR.67.1.86-156.2003. PMC: 150520. PMID 12626685. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC150520/. 
  66. ^ Ackermann, H.-W.; Krisch, H. M. (6 April 2014). “A catalogue of T4-type bacteriophages”. Archives of Virology 142 (12): 2329–2345. doi:10.1007/s007050050246. PMID 9672598. 




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「バクテリオファージ」の関連用語

バクテリオファージのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



バクテリオファージのページの著作権
Weblio 辞書情報提供元は参加元一覧にて確認できます。

  
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
精選版 日本国語大辞典精選版 日本国語大辞典
(C)Shogakukan Inc.
株式会社 小学館
JabionJabion
Copyright (C) 2022 NII,NIG,TUS. All Rights Reserved.
微生物管理機構微生物管理機構
Microbes Control Organization Ver 1.0 (C)1999-2022 Fumiaki Taguchi
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのファージ (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2022 GRAS Group, Inc.RSS