相同組換えとは? わかりやすく解説

Weblio 辞書 > 学問 > 生物学用語 > 相同組換えの意味・解説 

相同組換え

同義/類義語:相同的組換え, 相同組換え体, 相互的組換え
英訳・(英)同義/類義語:homologous recombination, General recombination

異なDNA分子間で、相互分子含まれる同じDNA配列を持つ領域間で二本鎖が形成されることがきっかけとなって分子間の再結合が起こることにより、もとのDNA分子の鎖が相互に置き換わった分子形成されること。

一般的組換え

同義/類義語:相同組換え
英訳・(英)同義/類義語:general recombination, homologous recombination

DNA配列間の相同性基づいて起こる組換え反応

相同組換え

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/01/06 15:31 UTC 版)

相同組換え(そうどうくみかえ、: homologous recombination、略称: HR)は遺伝的組換えの一種であり、2つの類似したまたは同一の核酸分子(生物では通常DNAであるが、ウイルスではRNAの場合もある)の間でヌクレオチド配列が交換される過程である。相同組換えは、DNA二本鎖の双方の鎖に起こった有害な切断(二本鎖切断)を正確に修復するために細胞で最も広く利用されている手法である。また、真核生物精子といった配偶子細胞を形成する過程である減数分裂において、相同組換えによってDNA配列の新たな組み合わせが作り出される。このようにして生じたDNAの新たな組み合わせによって子孫に遺伝的多様性がもたらされ、進化過程における集団の適応を可能にする[1]。相同組換えは遺伝子の水平伝播でも利用されており、細菌やウイルスのさまざまな系統や種の間で遺伝物質の交換が行われる。


  1. ^ Alberts, Bruce et al. (2002). “Chapter 5: DNA Replication, Repair, and Recombination”. Molecular Biology of the Cell (4th ed.). New York: Garland Science. p. 845. ISBN 978-0-8153-3218-3. OCLC 145080076. https://www.ncbi.nlm.nih.gov/books/bv.fcgi?&rid=mboc4.section.845 
  2. ^ “Altering the genome by homologous recombination”. Science 244 (4910): 1288–92. (June 1989). Bibcode1989Sci...244.1288C. doi:10.1126/science.2660260. PMID 2660260. 
  3. ^ “Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination”. Nature 317 (6034): 230–4. (1985-09-19). doi:10.1038/317230a0. PMID 2995814. 
  4. ^ “Yeast transformation: a model system for the study of recombination”. Proceedings of the National Academy of Sciences of the United States of America 78 (10): 6354–8. (October 1981). Bibcode1981PNAS...78.6354O. doi:10.1073/pnas.78.10.6354. PMC 349037. PMID 6273866. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC349037/. 
  5. ^ “Yeast recombination: the association between double-strand gap repair and crossing-over”. Proceedings of the National Academy of Sciences of the United States of America 80 (14): 4417–21. (July 1983). Bibcode1983PNAS...80.4417O. doi:10.1073/pnas.80.14.4417. PMC 384049. PMID 6308623. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC384049/. 
  6. ^ a b “The double-strand-break repair model for recombination”. Cell 33 (1): 25–35. (May 1983). doi:10.1016/0092-8674(83)90331-8. PMID 6380756. 
  7. ^ Resnick, M. A. (1976-06). “The repair of double-strand breaks in DNA; a model involving recombination”. Journal of Theoretical Biology 59 (1): 97–106. doi:10.1016/s0022-5193(76)80025-2. ISSN 0022-5193. PMID 940351. https://www.ncbi.nlm.nih.gov/pubmed/940351. 
  8. ^ “Repair of strand breaks by homologous recombination”. Cold Spring Harbor Perspectives in Biology 5 (11): a012740. (November 2013). doi:10.1101/cshperspect.a012740. PMC 3809576. PMID 24097900. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3809576/. 
  9. ^ “William Bateson: a biologist ahead of his time”. Journal of Genetics 81 (2): 49–58. (August 2002). doi:10.1007/BF02715900. PMID 12532036. http://www.ias.ac.in/jgenet/Vol81No2/49.pdf. 
  10. ^ Reginald Crundall Punnett”. NAHSTE, University of Edinburgh. 2010年7月3日閲覧。
  11. ^ Lobo, I; Shaw, K (2008). “Thomas Hunt Morgan, genetic recombination, and gene mapping”. Nature Education 1 (1). http://www.nature.com/scitable/topicpage/thomas-hunt-morgan-genetic-recombination-and-gene-496. 
  12. ^ a b “Proof of physical exchange of genes on the chromosomes”. Proceedings of the National Academy of Sciences of the United States of America 102 (19): 6641–6. (May 2005). Bibcode2005PNAS..102.6641C. doi:10.1073/pnas.0407340102. PMC 1100733. PMID 15867161. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1100733/. 
  13. ^ “A Correlation of Cytological and Genetical Crossing-Over in Zea Mays”. Proceedings of the National Academy of Sciences of the United States of America 17 (8): 492–7. (August 1931). Bibcode1931PNAS...17..492C. doi:10.1073/pnas.17.8.492. PMC 1076098. PMID 16587654. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1076098/. 
  14. ^ Stern, C (1931). “Zytologisch-genetische untersuchungen alsbeweise fur die Morgansche theorie des faktoraustauschs”. Biologisches Zentralblatt 51: 547–587. 
  15. ^ The development of bacterial genetics”. US National Library of Medicine. 2010年7月3日閲覧。
  16. ^ The Nobel Prize in Physiology or Medicine 1958”. Nobelprize.org. 2010年7月3日閲覧。
  17. ^ a b c “Repairing a double-strand chromosome break by homologous recombination: revisiting Robin Holliday's model”. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 359 (1441): 79–86. (January 2004). doi:10.1098/rstb.2003.1367. PMC 1693306. PMID 15065659. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1693306/. 
  18. ^ “12.5: Recombination between Homologous DNA Sites: Double-Strand Breaks in DNA Initiate Recombination”. Molecular Cell Biology (4th ed.). W. H. Freeman and Company. (2000). ISBN 978-0-7167-3136-8. https://archive.org/details/molecularcellbio00lodi 
  19. ^ Griffiths, AJF (1999). “8: Chromosome Mutations: Chromosomal Rearrangements”. Modern Genetic Analysis. W. H. Freeman and Company. ISBN 978-0-7167-3118-4. https://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=mga.section.1212 
  20. ^ “DNA double-strand breaks: signaling, repair and the cancer connection”. Nature Genetics 27 (3): 247–54. (March 2001). doi:10.1038/85798. PMID 11242102. 
  21. ^ a b c Nelson, DL; Cox, MM (2005). Principles of Biochemistry (4th ed.). Freeman. pp. 980–981. ISBN 978-0-7167-4339-2. https://archive.org/details/lehningerprincip00lehn_0/page/980 
  22. ^ “The evolution of meiosis: recruitment and modification of somatic DNA-repair proteins”. BioEssays 27 (8): 795–808. (August 2005). doi:10.1002/bies.20264. PMID 16015600. 
  23. ^ Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2008). Molecular Biology of the Cell (5th ed.). Garland Science. p. 305. ISBN 978-0-8153-4105-5 
  24. ^ a b “Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family”. Cell 88 (3): 375–84. (February 1997). doi:10.1016/S0092-8674(00)81876-0. PMID 9039264. 
  25. ^ “DNA double-strand breaks in meiosis: checking their formation, processing and repair”. DNA Repair 8 (9): 1127–38. (September 2009). doi:10.1016/j.dnarep.2009.04.005. PMID 19464965. 
  26. ^ “Total follicular populations in ewes of high and low ovulation rates”. Journal of Reproduction and Fertility 55 (1): 27–36. (January 1979). doi:10.1371/journal.pbio.0020192. PMC 423159. PMID 423159. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC423159/. 
  27. ^ Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2008). Molecular Biology of the Cell (5th ed.). Garland Science. p. 303. ISBN 978-0-8153-4105-5 
  28. ^ a b “Regulation of DNA double-strand break repair pathway choice”. Cell Research 18 (1): 134–47. (January 2008). doi:10.1038/cr.2007.111. PMID 18157161. 
  29. ^ a b “Nucleases and helicases take center stage in homologous recombination”. Trends in Biochemical Sciences 34 (5): 264–72. (May 2009). doi:10.1016/j.tibs.2009.01.010. PMID 19375328. 
  30. ^ “CDK targets Sae2 to control DNA-end resection and homologous recombination”. Nature 455 (7213): 689–92. (October 2008). Bibcode2008Natur.455..689H. doi:10.1038/nature07215. PMC 2635538. PMID 18716619. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635538/. 
  31. ^ “Chromatin remodeling, DNA damage repair and aging”. Curr. Genomics 13 (7): 533–47. (2012). doi:10.2174/138920212803251373. PMC 3468886. PMID 23633913. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468886/. 
  32. ^ a b c d “The poly(ADP-ribose)-dependent chromatin remodeler Alc1 induces local chromatin relaxation upon DNA damage”. Mol. Biol. Cell 27 (24): 3791–3799. (2016). doi:10.1091/mbc.E16-05-0269. PMC 5170603. PMID 27733626. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5170603/. 
  33. ^ “JNK Phosphorylates SIRT6 to Stimulate DNA Double-Strand Break Repair in Response to Oxidative Stress by Recruiting PARP1 to DNA Breaks”. Cell Rep 16 (10): 2641–50. (2016). doi:10.1016/j.celrep.2016.08.006. PMC 5089070. PMID 27568560. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5089070/. 
  34. ^ a b “PARP1-dependent kinetics of recruitment of MRE11 and NBS1 proteins to multiple DNA damage sites”. J. Biol. Chem. 283 (2): 1197–208. (2008). doi:10.1074/jbc.M706734200. PMID 18025084. 
  35. ^ a b c “DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139”. J. Biol. Chem. 273 (10): 5858–68. (1998). doi:10.1074/jbc.273.10.5858. PMID 9488723. 
  36. ^ “RNF8 ubiquitylates histones at DNA double-strand breaks and promotes assembly of repair proteins”. Cell 131 (5): 887–900. (2007). doi:10.1016/j.cell.2007.09.040. PMID 18001824. 
  37. ^ “A new non-catalytic role for ubiquitin ligase RNF8 in unfolding higher-order chromatin structure”. EMBO J. 31 (11): 2511–27. (2012). doi:10.1038/emboj.2012.104. PMC 3365417. PMID 22531782. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3365417/. 
  38. ^ a b c d “Mechanism of homologous recombination: mediators and helicases take on regulatory functions”. Nature Reviews Molecular Cell Biology 7 (10): 739–50. (October 2006). doi:10.1038/nrm2008. PMID 16926856. 
  39. ^ “Replication protein A: a heterotrimeric, single-stranded DNA-binding protein required for eukaryotic DNA metabolism”. Annual Review of Biochemistry 66: 61–92. (1997). doi:10.1146/annurev.biochem.66.1.61. PMID 9242902. 
  40. ^ Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2008). Molecular Biology of the Cell (5th ed.). Garland Science. pp. 312–313. ISBN 978-0-8153-4105-5. https://www.ncbi.nlm.nih.gov/books/bv.fcgi?&rid=mboc4.section.845 
  41. ^ a b c “DNA double-strand break repair: from mechanistic understanding to cancer treatment”. DNA Repair 6 (7): 923–35. (July 2007). doi:10.1016/j.dnarep.2007.02.006. PMID 17363343. 
  42. ^ a b “Meiotic versus mitotic recombination: two different routes for double-strand break repair: the different functions of meiotic versus mitotic DSB repair are reflected in different pathway usage and different outcomes”. BioEssays 32 (12): 1058–66. (December 2010). doi:10.1002/bies.201000087. PMC 3090628. PMID 20967781. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3090628/. 
  43. ^ “Differential timing and control of noncrossover and crossover recombination during meiosis”. Cell 106 (1): 47–57. (July 2001). doi:10.1016/s0092-8674(01)00416-0. PMID 11461701. 
  44. ^ Haber lab. “Single-strand annealing”. Brandeis University. 2010年7月3日閲覧。
  45. ^ a b c “A tale of tails: insights into the coordination of 3' end processing during homologous recombination”. BioEssays 31 (3): 315–21. (March 2009). doi:10.1002/bies.200800195. PMC 2958051. PMID 19260026. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2958051/. 
  46. ^ “DNA end resection: many nucleases make light work”. DNA Repair 8 (9): 983–95. (September 2009). doi:10.1016/j.dnarep.2009.04.017. PMC 2760233. PMID 19473888. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760233/. 
  47. ^ “Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae”. Microbiology and Molecular Biology Reviews 63 (2): 349–404. (June 1999). PMC 98970. PMID 10357855. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC98970/. 
  48. ^ a b “Break-induced replication and recombinational telomere elongation in yeast”. Annual Review of Biochemistry 75: 111–35. (2006). doi:10.1146/annurev.biochem.74.082803.133234. PMID 16756487. 
  49. ^ Haber, James E., ed (January 2009). “Short telomeres initiate telomere recombination in primary and tumor cells”. PLoS Genetics 5 (1): e1000357. doi:10.1371/journal.pgen.1000357. PMC 2627939. PMID 19180191. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2627939/. 
  50. ^ “The first molecular details of ALT in human tumor cells”. Human Molecular Genetics 14 Spec No. 2 (Review Issue 2): R191–6. (October 2005). doi:10.1093/hmg/ddi266. PMID 16244317. http://hmg.oxfordjournals.org/cgi/content/full/14/suppl_2/R191. 
  51. ^ PDB: 3cmt​; “Mechanism of homologous recombination from the RecA-ssDNA/dsDNA structures”. Nature 453 (7194): 489–4. (May 2008). Bibcode2008Natur.453..489C. doi:10.1038/nature06971. PMID 18497818. 
  52. ^ “Biochemistry of homologous recombination in Escherichia coli”. Microbiological Reviews 58 (3): 401–65. (September 1994). PMC 372975. PMID 7968921. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC372975/. 
  53. ^ “Comparative and evolutionary analysis of the bacterial homologous recombination systems”. PLoS Genetics 1 (2): e15. (August 2005). doi:10.1371/journal.pgen.0010015. PMC 1193525. PMID 16132081. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1193525/. 
  54. ^ a b “Intersubunit signaling in RecBCD enzyme, a complex protein machine regulated by Chi hot spots”. Genes & Development 21 (24): 3296–307. (December 2007). doi:10.1101/gad.1605807. PMC 2113030. PMID 18079176. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2113030/. 
  55. ^ Singleton, Martin R.; Dillingham, Mark S.; Gaudier, Martin; Kowalczykowski, Stephen C.; Wigley, Dale B. (2004-11-11). “Crystal structure of RecBCD enzyme reveals a machine for processing DNA breaks”. Nature 432 (7014): 187–193. doi:10.1038/nature02988. ISSN 1476-4687. PMID 15538360. https://www.ncbi.nlm.nih.gov/pubmed/15538360. 
  56. ^ “Phylogenetic ubiquity and shuffling of the bacterial RecBCD and AddAB recombination complexes”. Journal of Bacteriology 191 (16): 5076–84. (August 2009). doi:10.1128/JB.00254-09. PMC 2725590. PMID 19542287. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725590/. 
  57. ^ a b “How RecBCD enzyme and Chi promote DNA break repair and recombination: a molecular biologist's view”. Microbiology and Molecular Biology Reviews 76 (2): 217–28. (June 2012). doi:10.1128/MMBR.05026-11. PMC 3372252. PMID 22688812. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372252/. 
  58. ^ a b c d “RecBCD enzyme and the repair of double-stranded DNA breaks”. Microbiology and Molecular Biology Reviews 72 (4): 642–71, Table of Contents. (December 2008). doi:10.1128/MMBR.00020-08. PMC 2593567. PMID 19052323. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2593567/. 
  59. ^ “Recombination proteins and rescue of arrested replication forks”. DNA Repair 6 (7): 967–80. (July 2007). doi:10.1016/j.dnarep.2007.02.016. PMID 17395553. 
  60. ^ “A molecular throttle: the recombination hotspot chi controls DNA translocation by the RecBCD helicase”. Cell 114 (5): 647–54. (September 2003). doi:10.1016/S0092-8674(03)00681-0. PMID 13678587. 
  61. ^ “RecBCD enzyme is a DNA helicase with fast and slow motors of opposite polarity”. Nature 423 (6942): 889–93. (June 2003). Bibcode2003Natur.423..889T. doi:10.1038/nature01674. PMID 12815437. 
  62. ^ “RecBCD enzyme switches lead motor subunits in response to chi recognition”. Cell 131 (4): 694–705. (November 2007). doi:10.1016/j.cell.2007.09.023. PMC 2151923. PMID 18022364. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2151923/. 
  63. ^ Savir, Yonatan; Tlusty, Tsvi (2010-11-12). “RecA-mediated homology search as a nearly optimal signal detection system”. Molecular Cell 40 (3): 388–396. doi:10.1016/j.molcel.2010.10.020. ISSN 1097-4164. PMID 21070965. https://www.ncbi.nlm.nih.gov/pubmed/21070965. 
  64. ^ Rambo, Robert P.; Williams, Gareth J.; Tainer, John A. (2010-11-12). “Achieving fidelity in homologous recombination despite extreme complexity: informed decisions by molecular profiling”. Molecular Cell 40 (3): 347–348. doi:10.1016/j.molcel.2010.10.032. ISSN 1097-4164. PMC 3003302. PMID 21070960. https://www.ncbi.nlm.nih.gov/pubmed/21070960. 
  65. ^ “Mechanism of homology recognition in DNA recombination from dual-molecule experiments”. Molecular Cell 46 (5): 616–24. (June 2012). doi:10.1016/j.molcel.2012.03.029. PMID 22560720. 
  66. ^ Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2008). Molecular Biology of the Cell (5th ed.). Garland Science. p. 307. ISBN 978-0-8153-4105-5 
  67. ^ “RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair”. Molecular Cell 11 (5): 1337–47. (May 2003). doi:10.1016/S1097-2765(03)00188-6. PMID 12769856. 
  68. ^ “DNA repair: common approaches to fixing double-strand breaks”. Current Biology 19 (13): R523–5. (July 2009). doi:10.1016/j.cub.2009.06.009. PMID 19602417. 
  69. ^ “Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli”. Genes & Development 23 (10): 1234–45. (May 2009). doi:10.1101/gad.1780709. PMC 2685532. PMID 19451222. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685532/. 
  70. ^ a b “Molecular views of recombination proteins and their control”. Nature Reviews Molecular Cell Biology 4 (6): 435–45. (June 2003). doi:10.1038/nrm1127. PMID 12778123. 
  71. ^ a b c d Watson, James D.; Baker, Tania A.; Bell, Stephen P.; Gann, Alexander; Levine, Michael; Losick, Richard (2003). Molecular Biology of the Gene (5th ed.). Pearson/Benjamin Cummings. pp. 259–291. ISBN 978-0-8053-4635-0 
  72. ^ Sandler, Steve, ed (28 November 2007). “Physical analyses of E. coli heteroduplex recombination products in vivo: on the prevalence of 5' and 3' patches”. PLOS ONE 2 (11): e1242. Bibcode2007PLoSO...2.1242G. doi:10.1371/journal.pone.0001242. PMC 2082072. PMID 18043749. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082072/. 
  73. ^ Thomas, Christopher M.; Nielsen, Kaare M. (2005-09). “Mechanisms of, and barriers to, horizontal gene transfer between bacteria”. Nature Reviews. Microbiology 3 (9): 711–721. doi:10.1038/nrmicro1234. ISSN 1740-1526. PMID 16138099. https://www.ncbi.nlm.nih.gov/pubmed/16138099. 
  74. ^ “Molecular keys to speciation: DNA polymorphism and the control of genetic exchange in enterobacteria”. Proceedings of the National Academy of Sciences of the United States of America 94 (18): 9763–7. (September 1997). Bibcode1997PNAS...94.9763V. doi:10.1073/pnas.94.18.9763. PMC 23264. PMID 9275198. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC23264/. 
  75. ^ “The effect of mismatch repair and heteroduplex formation on sexual isolation in Bacillus”. Genetics 148 (1): 13–8. (January 1998). PMC 1459767. PMID 9475717. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1459767/. 
  76. ^ “Barriers to genetic exchange between bacterial species: Streptococcus pneumoniae transformation”. Journal of Bacteriology 182 (4): 1016–23. (February 2000). doi:10.1128/JB.182.4.1016-1023.2000. PMC 94378. PMID 10648528. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC94378/. 
  77. ^ “DNA uptake during bacterial transformation”. Nature Reviews. Microbiology 2 (3): 241–9. (March 2004). doi:10.1038/nrmicro844. PMID 15083159. 
  78. ^ “The genetic transformation machinery: composition, localization, and mechanism”. FEMS Microbiology Reviews 33 (3): 643–56. (May 2009). doi:10.1111/j.1574-6976.2009.00164.x. PMID 19228200. 
  79. ^ “Intracellular protein and DNA dynamics in competent Bacillus subtilis cells”. Cell 122 (1): 73–84. (July 2005). doi:10.1016/j.cell.2005.04.036. PMID 16009134. 
  80. ^ Fleischmann Jr, WR (1996). “43”. Medical Microbiology (4th ed.). University of Texas Medical Branch at Galveston. ISBN 978-0-9631172-1-2. https://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=mmed&part=A2330 
  81. ^ Martin, Darren P., ed (3 May 2010). “Guidelines for identifying homologous recombination events in influenza A virus”. PLOS ONE 5 (5): e10434. Bibcode2010PLoSO...510434B. doi:10.1371/journal.pone.0010434. PMC 2862710. PMID 20454662. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2862710/. 
  82. ^ a b “Homologous RNA recombination in brome mosaic virus: AU-rich sequences decrease the accuracy of crossovers”. Journal of Virology 70 (1): 415–26. (January 1996). PMC 189831. PMID 8523555. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC189831/. 
  83. ^ “The puzzle of RNA recombination”. FEBS Letters 460 (1): 1–5. (October 1999). doi:10.1016/S0014-5793(99)01282-X. PMID 10571050. 
  84. ^ a b “Mechanisms of plant virus evolution”. Annual Review of Phytopathology 35: 191–209. (September 1997). doi:10.1146/annurev.phyto.35.1.191. PMID 15012521. 
  85. ^ “The molecular biology of human herpesvirus-6 latency and telomere integration”. Microbes and Infection / Institut Pasteur 13 (8–9): 731–41. (August 2011). doi:10.1016/j.micinf.2011.03.006. PMC 3130849. PMID 21458587. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3130849/. 
  86. ^ “Deoxyribonucleic acid repair in bacteriophage”. Microbiological Reviews 45 (1): 72–98. (March 1981). PMC 281499. PMID 6261109. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC281499/. 
  87. ^ Bernstein C, Bernstein H (2001). DNA repair in bacteriophage. In: Nickoloff JA, Hoekstra MF (Eds.) DNA Damage and Repair, Vol.3. Advances from Phage to Humans. Humana Press, Totowa, NJ, pp. 1–19. ISBN 978-0896038035
  88. ^ “Structural relationship of bacterial RecA proteins to recombination proteins from bacteriophage T4 and yeast”. Science 259 (5103): 1892–6. (March 1993). Bibcode1993Sci...259.1892S. doi:10.1126/science.8456313. PMID 8456313. 
  89. ^ “Adaptive value of sex in microbial pathogens”. Infection, Genetics and Evolution 8 (3): 267–85. (May 2008). doi:10.1016/j.meegid.2008.01.002. PMID 18295550. http://www.hummingbirds.arizona.edu/Faculty/Michod/Downloads/IGE%20review%20sex.pdf
  90. ^ “Association between maternal age and meiotic recombination for trisomy 21”. American Journal of Human Genetics 76 (1): 91–9. (January 2005). doi:10.1086/427266. PMC 1196437. PMID 15551222. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1196437/. 
  91. ^ Cold Spring Harbor Laboratory (2007年). “Human RecQ Helicases, Homologous Recombination And Genomic Instability”. ScienceDaily. 2010年7月3日閲覧。
  92. ^ “Homologous recombination: from model organisms to human disease”. Genome Biology 2 (5): REVIEWS1014. (2001). doi:10.1186/gb-2001-2-5-reviews1014. PMC 138934. PMID 11387040. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC138934/. 
  93. ^ “Cancer predisposition caused by elevated mitotic recombination in Bloom mice”. Nature Genetics 26 (4): 424–9. (December 2000). doi:10.1038/82548. PMID 11101838. 
  94. ^ a b Alberts, Bruce; Johnson, Alexander; Lewis, Julian; Raff, Martin; Roberts, Keith; Walter, Peter (2007). Molecular Biology of the Cell (5th ed.). Garland Science. ISBN 978-0-8153-4110-9 
  95. ^ a b c “Roles of BRCA1 and BRCA2 in homologous recombination, DNA replication fidelity and the cellular response to ionizing radiation”. Oncogene 22 (37): 5784–91. (September 2003). doi:10.1038/sj.onc.1206678. PMID 12947386. 
  96. ^ Use of homologous recombination deficiency (HRD) score to enrich for niraparib sensitive high grade ovarian tumors.
  97. ^ a b c d e f g h “Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer”. Proceedings of the National Academy of Sciences of the United States of America 103 (27): 10328–33. (July 2006). Bibcode2006PNAS..10310328L. doi:10.1073/pnas.0604232103. PMC 1502457. PMID 16798872. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1502457/. 
  98. ^ a b “An archaeal Rad54 protein remodels DNA and stimulates DNA strand exchange by RadA”. Nucleic Acids Research 37 (8): 2757–70. (May 2009). doi:10.1093/nar/gkp068. PMC 2677860. PMID 19282450. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2677860/. 
  99. ^ “The single-stranded DNA binding protein of Sulfolobus solfataricus acts in the presynaptic step of homologous recombination”. Journal of Molecular Biology 397 (1): 31–45. (March 2010). doi:10.1016/j.jmb.2010.01.004. PMID 20080104. 
  100. ^ “Efficient 5'-3' DNA end resection by HerA and NurA is essential for cell viability in the crenarchaeon Sulfolobus islandicus”. BMC Molecular Biology 16: 2. (2015). doi:10.1186/s12867-015-0030-z. PMC 4351679. PMID 25880130. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351679/. 
  101. ^ “On the role of ATP hydrolysis in RecA protein-mediated DNA strand exchange. III. Unidirectional branch migration and extensive hybrid DNA formation”. The Journal of Biological Chemistry 269 (32): 20653–61. (August 1994). PMID 8051165. 
  102. ^ “A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis”. Current Biology 15 (2): 185–91. (January 2005). doi:10.1016/j.cub.2005.01.003. PMID 15668177. 
  103. ^ a b “Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss”. Molecular Biology and Evolution 24 (12): 2827–41. (December 2007). doi:10.1093/molbev/msm217. PMID 17921483. 
  104. ^ “Chapter 8.5: Gene Replacement and Transgenic Animals: DNA Is Transferred into Eukaryotic Cells in Various Ways”. Molecular Cell Biology (4th ed.). W. H. Freeman and Company. (2000). ISBN 978-0-7167-3136-8. https://archive.org/details/molecularcellbio00lodi 
  105. ^ The Nobel Prize in Physiology or Medicine 2007”. The Nobel Foundation. 2008年12月15日閲覧。
  106. ^ “On the conservative nature of intragenic recombination”. Proceedings of the National Academy of Sciences of the United States of America 102 (15): 5380–5. (April 2005). Bibcode2005PNAS..102.5380D. doi:10.1073/pnas.0500729102. PMC 556249. PMID 15809422. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC556249/. 
  107. ^ “Thermodynamic prediction of protein neutrality”. Proceedings of the National Academy of Sciences of the United States of America 102 (3): 606–11. (January 2005). arXiv:q-bio/0409013. Bibcode2005PNAS..102..606B. doi:10.1073/pnas.0406744102. PMC 545518. PMID 15644440. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC545518/. 
  108. ^ a b “Engineering by homologous recombination: exploring sequence and function within a conserved fold”. Current Opinion in Structural Biology 17 (4): 454–9. (August 2007). doi:10.1016/j.sbi.2007.08.005. PMID 17884462. 
  109. ^ “Structure-guided recombination creates an artificial family of cytochromes P450”. PLoS Biology 4 (5): e112. (May 2006). doi:10.1371/journal.pbio.0040112. PMC 1431580. PMID 16594730. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1431580/. 
  110. ^ “Evolutionary information for specifying a protein fold”. Nature 437 (7058): 512–8. (September 2005). Bibcode2005Natur.437..512S. doi:10.1038/nature03991. PMID 16177782. 
  111. ^ “Chimeras of two isoprenoid synthases catalyze all four coupling reactions in isoprenoid biosynthesis”. Science 316 (5821): 73–6. (April 2007). Bibcode2007Sci...316...73T. doi:10.1126/science.1137786. PMID 17412950. 
  112. ^ “Diversification of catalytic function in a synthetic family of chimeric cytochrome p450s”. Chemistry & Biology 14 (3): 269–78. (March 2007). doi:10.1016/j.chembiol.2007.01.009. PMC 1991292. PMID 17379142. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1991292/. 
  113. ^ a b c “Synthetic lethality--a new direction in cancer-drug development”. The New England Journal of Medicine 361 (2): 189–91. (July 2009). doi:10.1056/NEJMe0903044. PMID 19553640. 
  114. ^ “Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers”. The New England Journal of Medicine 361 (2): 123–34. (July 2009). doi:10.1056/NEJMoa0900212. PMID 19553641. 
  115. ^ “Resistance to therapy caused by intragenic deletion in BRCA2”. Nature 451 (7182): 1111–5. (February 2008). Bibcode2008Natur.451.1111E. doi:10.1038/nature06548. PMID 18264088. 



相同組換え

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/07/22 23:04 UTC 版)

遺伝的組換え」の記事における「相同組換え」の解説

詳細は「相同組換え」を参照 染色体組換えは普通、相同性のあるDNAの間で行われる。これを相同組換えという。 減数分裂過程染色体乗換えに伴うのが普通であるが、体細胞分裂での乗換えに伴うものもある。 相同組換えであっても染色体別の位置染色体レベルでは相同でない)の間で組換え起これば座位の数が変化するその範囲遺伝子含まれていれば遺伝子の重複または欠失につながる。これを不等組換えといい、不等乗換えに当たる。 これらの相同性があるDNA配列の間での組換え反応(相同組換え)を触媒するのは、組換え酵素(リコンビナーゼ)と呼ばれる酵素である。 大腸菌を含む真性細菌においてはRecA呼ばれるリコンビナーゼが相同組換えを介してDNA修復外来DNA取り込み関与している。一般にリコンビナーゼは細胞にとって重大な障害であるDNA二本切断(DSBs)の修復に重要である。大腸菌においては電離放射線DNA複製失敗によってDNA二重鎖が切断されると、RecBCD呼ばれるヘリカーゼヌクレアーゼ複合体によりその末端認識消化が行われ一本鎖DNA生じる。通常生体内一本鎖DNA領域一本鎖結合蛋白質 (ssDNA binding protein, SSB) によって保護されているがRecBCD働きにより一本鎖DNA上にRecAタンパク質配置されるその後RecAタンパク質SSB除去しながら一本鎖DNA上に重合伸長することにより右巻き螺旋のヌクレオプロテインフィラメントが形成されるその後RecAフィラメント染色体上の相同領域探しあて組換え反応を行う。 酵母ヒトを含む真核生物では2種のリコンビナーゼが知られている。そのうちRad51タンパク質体細胞分裂および減数分裂での相同組換えに必要である。もう一つDmc1タンパク質減数分裂時の相同組換えに特異的に機能する真核生物ではDNA二重鎖の切断末端はMre11/Rad50/Nbs1 (Xrs2) 複合体によって認識され、さらにこの複合体中心にその後修復様式制御されている。相同組換えを介した修復が行われる際は、ヘリカーゼおよびヌクレアーゼによって一本鎖領域生じ、さらに一本鎖DNA結合蛋白質 (RPA) によって安定化される。その後Rad52タンパク質等の組換え触媒蛋白質一本鎖DNA上でRPA除去しRad51配置することで、最終的にRecA同様のヌクレオプロテインフィラメントを形成し相同組換え反応起こす

※この「相同組換え」の解説は、「遺伝的組換え」の解説の一部です。
「相同組換え」を含む「遺伝的組換え」の記事については、「遺伝的組換え」の概要を参照ください。

ウィキペディア小見出し辞書の「相同組換え」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「相同組換え」の関連用語

相同組換えのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



相同組換えのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
JabionJabion
Copyright (C) 2024 NII,NIG,TUS. All Rights Reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの相同組換え (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの遺伝的組換え (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。

©2024 GRAS Group, Inc.RSS