塩基対
塩基対
塩基対
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/06/26 05:56 UTC 版)


塩基対(えんきつい、英: base pair、bp)とは、デオキシリボ核酸の2本のポリヌクレオチド分子が、アデニン (A) とチミン (T)(もしくはウラシル (U))、グアニン (G) とシトシン (C) という決まった組を作り、水素結合で繋がったもの。この組み合わせはジェームズ・ワトソンとフランシス・クリックが発見したもので、「ワトソン・クリック型塩基対」「天然型塩基対」と言う。DNA や RNA の場合、ワトソン・クリック型塩基対が形成しさらに隣り合う塩基対の間に疎水性相互作用がはたらくことが、二重らせん構造が安定化する駆動力となっている。
これに対して、DNAが三重鎖を作るときなどには「フーグスティーン型塩基対」という別のパターンの塩基対も現れる。テロメア配列が持つ四重鎖構造、G-カルテットもフーグスティーン型の構造をとっている。さらに人工的に合成したATGC以外の塩基を使って、特別な塩基対を作り出すことも可能である。
インターカレーションとは、平面状の部位を持つ有機分子(インターカレーター)が、2個の塩基対の間にその平面部位を挿入する現象を指す。臭化エチジウムはインターカレーターの代表例である。
単位
塩基対 (bp) は遺伝子やDNA断片の大きさを表す単位のようにも使われ、「ヒトゲノムのサイズは 3 Gbp(ギガベースペア、30億塩基対)」「大腸菌ゲノムのサイズは 4.8 Mbp(メガベースペア、480万塩基対)」という言い方をする。デオキシリボヌクレオチドの平均分子量はおよそ 327 であり、脱水重合で 1塩基対あたり水 2分子が抜けることなどを考慮すると、塩基対の大きさに 616 をかけることでおおよその分子量が求められる[1]。現実のDNA分子では、GC含量や化学修飾などさらに複雑な要因が関与するため、脱水重合すら考慮せず、およそ 660 と見なして計算する場合も非常に多い。非常に大まかな換算でよければ、 1 Gbp のDNA 1分子がおよそ 1pgに相当する。
参考文献
- ^ Doležel, J. et al. (2003). “Nuclear DNA content and genome size of trout and human.”. Cytometry 51 A (2): 127-128 .
塩基対
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2020/05/03 04:53 UTC 版)
.mw-parser-output .tmulti .thumbinner{display:flex;flex-direction:column}.mw-parser-output .tmulti .trow{display:flex;flex-direction:row;clear:left;flex-wrap:wrap;width:100%;box-sizing:border-box}.mw-parser-output .tmulti .tsingle{margin:1px;float:left}.mw-parser-output .tmulti .theader{clear:both;font-weight:bold;text-align:center;align-self:center;background-color:transparent;width:100%}.mw-parser-output .tmulti .thumbcaption{text-align:left;background-color:transparent}.mw-parser-output .tmulti .text-align-left{text-align:left}.mw-parser-output .tmulti .text-align-right{text-align:right}.mw-parser-output .tmulti .text-align-center{text-align:center}@media all and (max-width:720px){.mw-parser-output .tmulti .thumbinner{width:100%!important;box-sizing:border-box;max-width:none!important;align-items:center}.mw-parser-output .tmulti .trow{justify-content:center}.mw-parser-output .tmulti .tsingle{float:none!important;max-width:100%!important;box-sizing:border-box;text-align:center}.mw-parser-output .tmulti .thumbcaption{text-align:center}} (上)AT塩基対の2つの分子間水素結合、(下)GC塩基対の3つの分子間水素結合 詳細は「塩基対」を参照 相補的なDNA鎖またはRNA鎖間において、水素結合で連結された2つのヌクレオチドは塩基対と呼ばれる。DNAにおける標準的なワトソン・クリック型塩基対では、アデニン(A)とチミン(T)、グアニン(G)とシトシン(C)が塩基対を形成する。RNAでは、チミンはウラシル(U)に置き換えられている。ゆらぎ(wobble)塩基対やフーグスティーン型塩基対といった代替的な水素結合パターンも(特にRNAでは)生じ、複雑で機能的な三次構造が形成される。タンパク質の翻訳においてmRNA上のコドンがtRNAのアンチコドンによって認識される機構が塩基対形成であることは重要である。一部のDNA・RNA結合酵素は特定の塩基対のパターンを認識し、遺伝子上の特定の調節領域を同定する。水素結合は、上述した塩基対形成の規則の根底にある化学的機構である。水素結合の供与体と受容体の適切な幾何学的対応によって、「正しい」対のみが安定に形成されるようになっている。GC含量が高いDNAはGC含量が低いDNAよりも安定であるが、一般に信じられているのとは異なり、水素結合はDNAの安定化には大きく寄与せず、安定化は主にスタッキング相互作用によるものである。 大きな核酸塩基のアデニンとグアニンはプリン塩基、小さな核酸塩基のシトシンとチミン(そしてウラシル)はピリミジン塩基と呼ばれる。プリンはピリミジンとだけ相補的となる。ピリミジン-ピリミジン対は水素結合を形成するには分子が離れすぎているためエネルギー的に不利であり、プリン-プリン対は分子が近すぎるため反発が起こる。他の可能性としてはGT塩基対とAC塩基対があるが、これらは水素結合の供与体と受容体のパターンが対応していないためミスマッチとなる。2つの水素結合が形成されるGUゆらぎ塩基対は、RNAではかなり多く生じている。
※この「塩基対」の解説は、「核酸の二次構造」の解説の一部です。
「塩基対」を含む「核酸の二次構造」の記事については、「核酸の二次構造」の概要を参照ください。
「塩基対」の例文・使い方・用例・文例
塩基対と同じ種類の言葉
- 塩基対のページへのリンク