対合とは? わかりやすく解説

たい‐ごう〔‐ガフ〕【対合】

読み方:たいごう

シナプシス

「対合」に似た言葉

対合


対合

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/04/21 10:17 UTC 版)

ナビゲーションに移動 検索に移動

対合(たいごう[1]、ついごう[1][2]involution)は、自分自身をそのとして持つ写像である。

これは空間上の変換であって、二回繰り返すと恒等変換となる(元に戻る)という性質

を持つものと言ってもよい。ただし、それ自身が恒等変換となるものは通常は除いて考える。またこれは変換群に属する位数 2 の元

を指すと言っても同じことであり、それを理由に一般の(抽象群)においても位数 2 の元を対合と呼ぶことがある。

  • 平面上の任意の点 x を、ある直線 l に関して対称な点 φ(x) に写す操作(鏡映)φ は、明らかに φ(φ(x)) = x を満たすから φ は平面上の対合である。
  • 集合 A に対し、普遍集合 S において A の補集合 Ac をとる操作は、(Ac)c = A を満たすから、この変換は S冪集合における対合である。
  • 複素数 z に対しその共役複素数 z* をとる複素数体 C 上の変換は、 (z*)* = z を満たすから対合である。

対合つき代数系

G が与えられ、その上の写像 I: GG が対合であって、次の関係

を満たすとき、対合 IG の群構造と両立するといい、組 (G, I) を対合付きの群と呼ぶ。群の逆元をとる演算

g, hG の元とすれば


を満たすので、これは群が標準的に持つ群構造と両立する対合である。

また、環 R とその上に対合 "*": RR



を満たすものの組 (R, "*") として対合付き環の概念が得られる。もっと一般に必ずしも可換でないものを含む二項演算(と単項演算、0項演算)のみからなる代数系 A にその上の対合 σ が存在するとき、σ が A からその逆代数系 Aopp への準同型となる(つまり、二項演算の順番を逆にし、単項、0 項演算と可換となる)とき、代数系 A の構造と対合 σ は両立するといい、組 (A, σ) を対合つき代数系と呼ぶ。たとえば、n 次全行列環 Mn(K) (K は可換環あるいは体)に、行列を転置させる写像 t を考えたとき、x, y を行列、λ をスカラーとすると




が満たされるので、(Mn(K), t) は対合つき多元環である。

L が対合となる自己同型 σ を持つとき、σ の固定体を F とすると、拡大 L/F は二次拡大である。

対合で生成される群

鏡映群、コクセター群は、(位数 2 の元という意味での)対合からなる生成系を持つ群である。

脚注

[脚注の使い方]
  1. ^ a b 青本和彦ほか『岩波数学入門辞典』岩波書店、2005年、362頁。ISBN 978-4-00-080209-3
  2. ^ 日本数学会編集『岩波数学辞典』岩波書店、2007年、第4版、1841頁。 ISBN 978-4-00-080309-0

関連項目


対合

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/06/23 10:04 UTC 版)

可補束」の記事における「対合」の解説

a⊥⊥ = a。

※この「対合」の解説は、「可補束」の解説の一部です。
「対合」を含む「可補束」の記事については、「可補束」の概要を参照ください。

ウィキペディア小見出し辞書の「対合」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

「対合」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「対合」の関連用語

対合のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



対合のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
JabionJabion
Copyright (C) 2025 NII,NIG,TUS. All Rights Reserved.
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの対合 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの可補束 (改訂履歴)、非相同末端結合 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS