『ゲームの理論と経済行動』(1944年)
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2022/06/10 17:01 UTC 版)
「ゲーム理論」の記事における「『ゲームの理論と経済行動』(1944年)」の解説
オーストリア学派の経済学者オスカー・モルゲンシュテルンは1928年に刊行した著書『経済予測—仮定とその可能性についての考察』においてフォン・ノイマンとは独立に、経済学におけるゲーム的状況の重要性を論じていた。この著書の中でモルゲンシュテルンは、経済主体が他の主体の決定を反映していない「死んだ」変数とそうでない「生きた」変数の二種類の変数に直面していることを明らかにし、現実の経済にとって後者がより重要であること、さらに従来の経済理論が「死んだ」変数しか扱えないことなどを指摘していた。さらに、モルゲンシュテルンは1935年に発表した論文「完全予見と経済均衡(独: "Volkkommence Voraussicht und Wirtschsftliches Gleichgewicht")」で当時の思想界から高い評価を受けたが、それをカール・メンガーの主催するコロキアムで報告した際に数学者チェクからモルゲンシュテルンの扱っている問題がフォン・ノイマンの「社会的ゲームについて」で扱われている問題と同じであることを教えてもらった。当時、モルゲンシュテルンはウィーン景気循環研究所の所長であり、現実経済の研究で忙しくゲーム理論の研究には取り組めていなかったが、1938年のナチス侵攻が原因で研究所所長を解雇されるとモルゲンシュテルンはフォン・ノイマンとの共同研究を期待してプリンストンに移住した。モルゲンシュテルンはプリンストン大学に赴任した1939年2月1日には同僚のフォン・ノイマンやニールス・ボーアと数時間に渡ってゲームや実験に関する議論をした。やがてモルゲンシュテルンは経済学への応用を念頭にゲーム理論を体系化した論文の草稿「ゲームの理論と経済行動」をフォン・ノイマンに見せるが、フォン・ノイマンは「短すぎてわかりにくい」とコメントし、「この論文を共同で書こう」と提案してきたという。1940年の秋頃、フォン・ノイマンはこの論文は雑誌論文としては長すぎるので分割して発表しようと提案したが、執筆する内にますます文量が増え、独立した100頁の書籍として出版することがプリンストン大学出版局との間で契約された。執筆途中にモルゲンシュテルンがボレルの編著『確率の計算とその応用』(1938年)に収められたジェーン・ヴィルの論文「ゲームの一般理論とプレイヤーの技能について」を偶然読んだことが契機となり、ブラウワーの不動点定理ではなく凸集合の分離定理を用いること着想し、プリンストン高等研究所におけるフォン・ノイマンの部下であった角谷静夫に補題を証明させ、それを用いてミニマックス定理を証明した。このとき角谷によって証明された補題は「角谷の不動点定理」として知られている。1942年のクリスマスにフォン・ノイマンが軍事出張のワシントンからプリンストンに帰った際に最後の数頁が書き終わり、1943年1月1日に序文が書かれ、予定の100頁をはるかに超える1200頁の大著『ゲームの理論と経済行動』(英: Theory of Games and Economic Behavior、略称: TGEB)が完成した。この大著は角谷静夫の校正を経て1944年1月18日に出版された。フォン・ノイマンが著者名の掲載順を通例に従いアルファベット順にしようと提案していたが、モルゲンシュテルンはそれを拒否したため、von Neumann and Oskar Morgenstern という掲載順で出版に至った。 『ゲームの理論と経済行動』においてフォン・ノイマンとモルゲンシュテルンは、まず、2人ゼロ和ゲームを展開形ゲームと戦略形ゲームによって表現し、このゲームにおける2人のプレイヤーそれぞれの最適な行動であるミニマックス行動を与え、その存在を示した(ミニマックス定理)。さらに、2人のプレイヤーの利害が完全には対立しない2人非ゼロ和ゲームを考え、3人以上のプレイヤーからなるゲームについてはプレイヤー間で話し合いが行われ協力行動が起こると考えその表現形式として提携形ゲームを定義し、協力ゲームの解概念である安定集合を定義・分析した。本書後半では安定集合を用いた市場分析などの経済学へのゲーム理論の応用が論じられた。 1944年に出版された『ゲームの理論と経済行動』に対する反響は大きく、以下のような書評が寄せられている。ハーバート・サイモン(1978年ノーベル賞受賞)は「社会理論を数学的に扱うことの必要性を確信している社会科学者たちを—まだ考えを変えていないがその点に対する説得には耳を傾けようとしている社会科学者と同様に—『ゲームの理論と経済行動』を修得するという仕事にとりかかること」を勧めた。サイモンは彼自身が構想していた研究をフォン・ノイマンとモルゲンシュテルンによって先んずられてしまうのではないかと不安であり、1944年のクリスマス休暇のほとんどを『ゲームの理論と経済行動』を読むことに費やしたという。レオニード・ハーヴィッツ(2009年ノーベル賞受賞)は「著者たちが経済学の問題の処理に用いた手法は十分な一般性を持っており、政治科学にも、社会学にも、また軍事戦略にも用いることができる」とし、「本書のようなすばらしい書が出版されることはめったにないことである」と賞賛した。ミシガン大学教授の数学者アーサー・コープランドは「後世の人々は、本書を20世紀前半における主要な業績として評価する」と称賛した。シカゴ大学教授のジャコブ・マルシャックは「この書の注意深く厳密な精神」を賞賛し、「このような書籍は10冊以上出るだろうし、経済学の進歩は確かである」と語った。これらの他にも、当時の権威ある様々な学術誌上に以下に引用するような書評が掲載された。 人は本書のほとんどの各ページに、大胆なヴィジョン、厳密な分析および深遠な思想があるのを知り、驚嘆せざるをえない。 — American Economic Review 本書の主たる業績は、さまざまな結果を具体的に導出したというよりも、現代論理の分析用具を経済学に導入し、それによって一般的分析の威力を開陳したことにある。 — Journal of Political Economy 読者は本書を読破することによって、社会科学への応用のためのアイデアや、理論の発展のための基本的な分析用具を潤沢に獲得できるであろう。 — American Journal of Sociology 後世の史家は、この本を20世紀前半を代表する主要な科学業績のひとつとみなすかもしれない。 — American Mathematical Society Bulletin 1947年には第2版が出版され、初版の第3章では論文誌に発表すると予告されていた付録が加えられた。この付録によって初めてフォン・ノイマン=モルゲンシュテルン効用関数が明確に定義され、期待効用理論が誕生した。なお、第2版の付録には産業の立地理論への応用や4人以上のゲームの問題などに関する付録も予定されていたが、著者らの多忙により断念された。1953年に出版された第3版と第2版との違いは誤植の訂正だけであり、現在では1947年に出版された第2版が定版とされている。 ベルヌーイが1738年に提唱した期待効用原理は当初からさまざまな批判に遭い長らく受け入れられなかった、フォン・ノイマンとモルゲンシュテルンがベルヌーイの思想を期待効用原理として公理化したことによって学界からも広く受け入れられることとなった。『ゲームの理論と経済行動』はその構成からも分かるように公理論的なアプローチを採用している。彼らは経済学に初めて公理論的なアプローチを取り入れたと言われており、その方法・構成・表現は後のゲーム理論研究の模範として踏襲されていった。
※この「『ゲームの理論と経済行動』(1944年)」の解説は、「ゲーム理論」の解説の一部です。
「『ゲームの理論と経済行動』(1944年)」を含む「ゲーム理論」の記事については、「ゲーム理論」の概要を参照ください。
- 『ゲームの理論と経済行動』のページへのリンク